|
import os |
|
os.system('git clone https://github.com/facebookresearch/detectron2.git') |
|
os.system('pip install -e detectron2') |
|
os.system("git clone https://github.com/microsoft/unilm.git") |
|
os.system("sed -i 's/from collections import Iterable/from collections.abc import Iterable/' unilm/dit/object_detection/ditod/table_evaluation/data_structure.py") |
|
os.system("curl -LJ -o publaynet_dit-b_cascade.pth 'https://layoutlm.blob.core.windows.net/dit/dit-fts/publaynet_dit-b_cascade.pth?sv=2022-11-02&ss=b&srt=o&sp=r&se=2033-06-08T16:48:15Z&st=2023-06-08T08:48:15Z&spr=https&sig=a9VXrihTzbWyVfaIDlIT1Z0FoR1073VB0RLQUMuudD4%3D'") |
|
|
|
import sys |
|
sys.path.append("unilm") |
|
sys.path.append("detectron2") |
|
|
|
|
|
os.system('pip install -q pytesseract') |
|
|
|
import gradio as gr |
|
import numpy as np |
|
from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification |
|
from datasets import load_dataset |
|
from PIL import Image, ImageDraw, ImageFont, ImageColor |
|
|
|
processor = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base") |
|
model = LayoutLMv3ForTokenClassification.from_pretrained("nielsr/layoutlmv3-finetuned-cord") |
|
|
|
dataset = load_dataset("ivan-wald/cord-layoutlmv3", split="test", trust_remote_code=True) |
|
image = Image.open("./test0.jpeg") |
|
labels = dataset.features['ner_tags'].feature.names |
|
id2label = {v: k for v, k in enumerate(labels)} |
|
|
|
|
|
label_ints = np.random.randint(0, len(ImageColor.colormap.items()), 61) |
|
label_color_pil = [k for k,_ in ImageColor.colormap.items()] |
|
label_color = [label_color_pil[i] for i in label_ints] |
|
label2color = {} |
|
for k,v in id2label.items(): |
|
label2color[v[2:]]=label_color[k] |
|
|
|
def unnormalize_box(bbox, width, height): |
|
return [ |
|
width * (bbox[0] / 1000), |
|
height * (bbox[1] / 1000), |
|
width * (bbox[2] / 1000), |
|
height * (bbox[3] / 1000), |
|
] |
|
|
|
def iob_to_label(label): |
|
label = label[2:] |
|
if not label: |
|
return 'other' |
|
return label |
|
|
|
def process_image(image): |
|
width, height = image.size |
|
|
|
|
|
encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt") |
|
offset_mapping = encoding.pop('offset_mapping') |
|
|
|
|
|
outputs = model(**encoding) |
|
|
|
|
|
predictions = outputs.logits.argmax(-1).squeeze().tolist() |
|
token_boxes = encoding.bbox.squeeze().tolist() |
|
|
|
|
|
is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0 |
|
true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]] |
|
true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]] |
|
|
|
|
|
draw = ImageDraw.Draw(image) |
|
font = ImageFont.load_default() |
|
for prediction, box in zip(true_predictions, true_boxes): |
|
predicted_label = iob_to_label(prediction) |
|
draw.rectangle(box, outline=label2color[predicted_label]) |
|
draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font) |
|
|
|
return image |
|
|
|
|
|
title = "LayoutLMv3 - CORD" |
|
description = "description" |
|
article = "article" |
|
examples =[['test0.jpeg'],['test1.jpeg'],['test2.jpeg']] |
|
css = ".output-image, .input-image, .image-preview {height: 600px !important}" |
|
|
|
iface = gr.Interface(fn=process_image, |
|
inputs=gr.Image(type="pil"), |
|
outputs=gr.Image(type="pil", label="annotated image"), |
|
title=title, |
|
examples=examples, |
|
css=css) |
|
|
|
iface.launch(debug=True) |