import os os.system('git clone https://github.com/facebookresearch/detectron2.git') os.system('pip install -e detectron2') os.system("git clone https://github.com/microsoft/unilm.git") os.system("sed -i 's/from collections import Iterable/from collections.abc import Iterable/' unilm/dit/object_detection/ditod/table_evaluation/data_structure.py") os.system("curl -LJ -o publaynet_dit-b_cascade.pth 'https://layoutlm.blob.core.windows.net/dit/dit-fts/publaynet_dit-b_cascade.pth?sv=2022-11-02&ss=b&srt=o&sp=r&se=2033-06-08T16:48:15Z&st=2023-06-08T08:48:15Z&spr=https&sig=a9VXrihTzbWyVfaIDlIT1Z0FoR1073VB0RLQUMuudD4%3D'") import sys sys.path.append("unilm") sys.path.append("detectron2") ## install PyTesseract os.system('pip install -q pytesseract') import gradio as gr import numpy as np from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification from datasets import load_dataset from PIL import Image, ImageDraw, ImageFont, ImageColor processor = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base") model = LayoutLMv3ForTokenClassification.from_pretrained("nielsr/layoutlmv3-finetuned-cord") dataset = load_dataset("ivan-wald/cord-layoutlmv3", split="test", trust_remote_code=True) image = Image.open("./test0.jpeg") labels = dataset.features['ner_tags'].feature.names id2label = {v: k for v, k in enumerate(labels)} #Need to get discrete colors for each labels label_ints = np.random.randint(0, len(ImageColor.colormap.items()), 61) label_color_pil = [k for k,_ in ImageColor.colormap.items()] label_color = [label_color_pil[i] for i in label_ints] label2color = {} for k,v in id2label.items(): label2color[v[2:]]=label_color[k] def unnormalize_box(bbox, width, height): return [ width * (bbox[0] / 1000), height * (bbox[1] / 1000), width * (bbox[2] / 1000), height * (bbox[3] / 1000), ] def iob_to_label(label): label = label[2:] if not label: return 'other' return label def process_image(image): width, height = image.size # encode encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt") offset_mapping = encoding.pop('offset_mapping') # forward pass outputs = model(**encoding) # get predictions predictions = outputs.logits.argmax(-1).squeeze().tolist() token_boxes = encoding.bbox.squeeze().tolist() # only keep non-subword predictions is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0 true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]] true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]] # draw predictions over the image draw = ImageDraw.Draw(image) font = ImageFont.load_default() for prediction, box in zip(true_predictions, true_boxes): predicted_label = iob_to_label(prediction) #.lower() draw.rectangle(box, outline=label2color[predicted_label]) draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font) return image title = "LayoutLMv3 - CORD" description = "description" article = "article" examples =[['test0.jpeg'],['test1.jpeg'],['test2.jpeg']] css = ".output-image, .input-image, .image-preview {height: 600px !important}" iface = gr.Interface(fn=process_image, inputs=gr.Image(type="pil"), outputs=gr.Image(type="pil", label="annotated image"), title=title, examples=examples, css=css) iface.launch(debug=True)