import re import gradio as gr from PIL import Image, ImageDraw import math import torch import html from transformers import DonutProcessor, VisionEncoderDecoderModel pretrained_repo_name = "ivelin/donut-refexp-draft" processor = DonutProcessor.from_pretrained(pretrained_repo_name) model = VisionEncoderDecoderModel.from_pretrained(pretrained_repo_name) device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) def process_refexp(image: Image, prompt: str): print(f"(image, prompt): {image}, {prompt}") # trim prompt to 80 characters and normalize to lowercase prompt = prompt[:80].lower() # prepare encoder inputs pixel_values = processor(image, return_tensors="pt").pixel_values # prepare decoder inputs task_prompt = "{user_input}" prompt = task_prompt.replace("{user_input}", prompt) decoder_input_ids = processor.tokenizer( prompt, add_special_tokens=False, return_tensors="pt").input_ids # generate answer outputs = model.generate( pixel_values.to(device), decoder_input_ids=decoder_input_ids.to(device), max_length=model.decoder.config.max_position_embeddings, early_stopping=True, pad_token_id=processor.tokenizer.pad_token_id, eos_token_id=processor.tokenizer.eos_token_id, use_cache=True, num_beams=1, bad_words_ids=[[processor.tokenizer.unk_token_id]], return_dict_in_generate=True, ) # postprocess sequence = processor.batch_decode(outputs.sequences)[0] print(fr"predicted decoder sequence: {html.escape(sequence)}") sequence = sequence.replace(processor.tokenizer.eos_token, "").replace( processor.tokenizer.pad_token, "") # remove first task start token sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() print( fr"predicted decoder sequence before token2json: {html.escape(sequence)}") bbox = processor.token2json(sequence) print(f"predicted bounding box: {bbox}") print(f"image object: {image}") print(f"image size: {image.size}") width, height = image.size print(f"image width, height: {width, height}") print(f"processed prompt: {prompt}") # safeguard in case text prediction is missing some bounding box coordinates xmin = math.floor(width*float(bbox["xmin"]) ) if bbox.get("xmin") is not None else 0 ymin = math.floor( height*float(bbox["ymin"])) if bbox.get("ymin") is not None else 0 xmax = math.floor(width*float(bbox["xmax"]) ) if bbox.get("xmax") is not None else 1 ymax = math.floor( height*float(bbox["ymax"])) if bbox.get("ymax") is not None else 1 print( f"to image pixel values: xmin, ymin, xmax, ymax: {xmin, ymin, xmax, ymax}") shape = [(xmin, ymin), (xmax, ymax)] # create rectangle image img1 = ImageDraw.Draw(image) img1.rectangle(shape, outline="green", width=5) return image, bbox title = "Demo: Donut 🍩 for UI RefExp" description = "Gradio Demo for Donut RefExp task, an instance of `VisionEncoderDecoderModel` fine-tuned on UIBert RefExp Dataset (UI Referring Expression). To use it, simply upload your image and type a question and click 'submit', or click one of the examples to load them. Read more at the links below." article = "

Donut: OCR-free Document Understanding Transformer | Github Repo

" examples = [["example_1.jpg", "select the setting icon from top right corner"], ["example_2.jpg", "enter the text field next to the name"]] demo = gr.Interface(fn=process_refexp, inputs=[gr.Image(type="pil"), "text"], outputs=[gr.Image(type="pil"), "json"], title=title, description=description, article=article, examples=examples, cache_examples=True ) demo.launch()