import re import gradio as gr from PIL import Image import torch from transformers import DonutProcessor, VisionEncoderDecoderModel pretrained_repo_name = "ivelin/donut-refexp-draft" processor = DonutProcessor.from_pretrained(pretrained_repo_name) model = VisionEncoderDecoderModel.from_pretrained(pretrained_repo_name) device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) def process_refexp(image: Image, prompt: str): # trim prompt to 80 characters and normalize to lowercase prompt = prompt[:80].lower() # prepare encoder inputs pixel_values = processor(image, return_tensors="pt").pixel_values # prepare decoder inputs task_prompt = "{user_input}" prompt = task_prompt.replace("{user_input}", prompt) decoder_input_ids = processor.tokenizer( prompt, add_special_tokens=False, return_tensors="pt").input_ids # generate answer outputs = model.generate( pixel_values.to(device), decoder_input_ids=decoder_input_ids.to(device), max_length=model.decoder.config.max_position_embeddings, early_stopping=True, pad_token_id=processor.tokenizer.pad_token_id, eos_token_id=processor.tokenizer.eos_token_id, use_cache=True, num_beams=1, bad_words_ids=[[processor.tokenizer.unk_token_id]], return_dict_in_generate=True, ) # postprocess sequence = processor.batch_decode(outputs.sequences)[0] sequence = sequence.replace(processor.tokenizer.eos_token, "").replace( processor.tokenizer.pad_token, "") # remove first task start token sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() bbox = processor.token2json(sequence) print(f"predicted bounding box: {bbox}") width, height = image.size print(f"image width, height: {width, height}") print(f"prompt: {sample['prompt']}") xmin = math.floor(width*bbox["xmin"]) ymin = math.floor(height*bbox["ymin"]) xmax = math.floor(width*bbox["xmax"]) ymax = math.floor(height*bbox["ymax"]) print( f"to image pixel values: xmin, ymin, xmax, ymax: {xmin, ymin, xmax, ymax}") shape = [(xmin, ymin), (xmax, ymax)] # create rectangle image img1 = ImageDraw.Draw(image) img1.rectangle(shape, outline="green", width=5) return image, bbox description = "Gradio Demo for Donut RefExp task, an instance of `VisionEncoderDecoderModel` fine-tuned on UIBert RefExp Dataset (UI Referring Expression). To use it, simply upload your image and type a question and click 'submit', or click one of the examples to load them. Read more at the links below." article = "

Donut: OCR-free Document Understanding Transformer | Github Repo

" examples = [ ["example_1.jpg", "select the setting icon from top right corner"], ["example_2.jpg", "enter the text field next to the name"] ], demo = gr.Interface(fn=process_refexp, inputs=[gr.inputs.Image(type='pil'), "textbox"], outputs=[gr.inputs.Image(type='pil'), "textbox"], title=title, description=description, article=article, examples=examples, allow_flagging=False, allow_screenshot=False) demo.launch(cache_examples=True)