Spaces:
Sleeping
Sleeping
# app.py | |
import gradio as gr | |
import xgboost as xgb | |
from huggingface_hub import hf_hub_download | |
from app_training_df_getter import create_app_user_training_df | |
# Define champion list for dropdowns | |
CHAMPIONS = [ | |
"Aatrox", "Ahri", "Akali", "Akshan", "Alistar", "Amumu", "Anivia", "Annie", "Aphelios", "Ashe", | |
"Aurelion Sol", "Azir", "Bard", "Bel'Veth", "Blitzcrank", "Brand", "Braum", "Caitlyn", "Camille", | |
"Cassiopeia", "Cho'Gath", "Corki", "Darius", "Diana", "Dr. Mundo", "Draven", "Ekko", "Elise", | |
"Evelynn", "Ezreal", "Fiddlesticks", "Fiora", "Fizz", "Galio", "Gangplank", "Garen", "Gnar", | |
"Gragas", "Graves", "Gwen", "Hecarim", "Heimerdinger", "Illaoi", "Irelia", "Ivern", "Janna", | |
"Jarvan IV", "Jax", "Jayce", "Jhin", "Jinx", "Kai'Sa", "Kalista", "Karma", "Karthus", "Kassadin", | |
"Katarina", "Kayle", "Kayn", "Kennen", "Kha'Zix", "Kindred", "Kled", "Kog'Maw", "KSante", "LeBlanc", | |
"Lee Sin", "Leona", "Lillia", "Lissandra", "Lucian", "Lulu", "Lux", "Malphite", "Malzahar", "Maokai", | |
"Master Yi", "Milio", "Miss Fortune", "Mordekaiser", "Morgana", "Naafiri", "Nami", "Nasus", "Nautilus", | |
"Neeko", "Nidalee", "Nilah", "Nocturne", "Nunu & Willump", "Olaf", "Orianna", "Ornn", "Pantheon", | |
"Poppy", "Pyke", "Qiyana", "Quinn", "Rakan", "Rammus", "Rek'Sai", "Rell", "Renata Glasc", "Renekton", | |
"Rengar", "Riven", "Rumble", "Ryze", "Samira", "Sejuani", "Senna", "Seraphine", "Sett", "Shaco", | |
"Shen", "Shyvana", "Singed", "Sion", "Sivir", "Skarner", "Sona", "Soraka", "Swain", "Sylas", | |
"Syndra", "Tahm Kench", "Taliyah", "Talon", "Taric", "Teemo", "Thresh", "Tristana", "Trundle", | |
"Tryndamere", "Twisted Fate", "Twitch", "Udyr", "Urgot", "Varus", "Vayne", "Veigar", "Vel'Koz", | |
"Vex", "Vi", "Viego", "Viktor", "Vladimir", "Volibear", "Warwick", "Wukong", "Xayah", "Xerath", | |
"Xin Zhao", "Yasuo", "Yone", "Yorick", "Yuumi", "Zac", "Zed", "Zeri", "Ziggs", "Zilean", "Zoe", "Zyra" | |
] | |
# Load model | |
try: | |
model_path = hf_hub_download( | |
repo_id="ivwhy/champion-predictor-model", | |
filename="champion_predictor.json" | |
) | |
model = xgb.Booster() | |
model.load_model(model_path) | |
except Exception as e: | |
print(f"Error loading model: {e}") | |
model = None | |
# Functions | |
def get_user_training_df(player_opgg_url): | |
try: | |
print("========= Inside get_user_training_df(player_opgg_url) ============= \n") | |
print("player_opgg_url: ", player_opgg_url, "\n type(player_opgg_url): ", type(player_opgg_url), "\n") | |
# Add input validation | |
if not player_opgg_url or not isinstance(player_opgg_url, str): | |
return "Invalid URL provided" | |
training_df = create_app_user_training_df(player_opgg_url) | |
return training_df | |
except Exception as e: | |
# Add more detailed error information | |
import traceback | |
error_trace = traceback.format_exc() | |
print(f"Full error trace:\n{error_trace}") | |
return f"Error getting training data: {str(e)}" | |
#return f"Error getting training data: {e}" | |
def show_stats(player_opgg_url): | |
"""Display player statistics and recent matches""" | |
if not player_opgg_url: | |
return "Please enter a player link to OPGG", None | |
try: | |
training_features = get_user_training_df(player_opgg_url) | |
if isinstance(training_features, str): # Error message | |
return training_features, None | |
wins = training_features['result'].sum() | |
losses = len(training_features) - wins | |
winrate = f"{(wins / len(training_features)) * 100:.0f}%" | |
favorite_champions = ( | |
training_features['champion'] | |
.value_counts() | |
.head(3) | |
.index.tolist() | |
) | |
stats_html = f""" | |
<div style='padding: 20px; background: #f5f5f5; border-radius: 10px;'> | |
<h3>Player Stats</h3> | |
<p>Wins: {wins} | Losses: {losses}</p> | |
<p>Winrate: {winrate}</p> | |
<p>Favorite Champions: {', '.join(favorite_champions)}</p> | |
</div> | |
""" | |
return stats_html, None | |
except Exception as e: | |
return f"Error processing stats: {e}", None | |
def predict_champion(player_opgg_url, *champions): | |
"""Make prediction based on selected champions""" | |
if not player_opgg_url or None in champions: | |
return "Please fill in all fields" | |
try: | |
if model is None: | |
return "Model not loaded properly" | |
features = get_user_training_df(player_opgg_url) | |
if isinstance(features, str): # Error message | |
return features | |
prediction = model.predict(features) | |
predicted_champion = CHAMPIONS[prediction[0]] | |
return f"Predicted champion: {predicted_champion}" | |
except Exception as e: | |
return f"Error making prediction: {e}" | |
# Define your interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# League of Legends Champion Prediction") | |
with gr.Row(): | |
player_opgg_url = gr.Textbox(label="OPGG Player URL") | |
show_button = gr.Button("Show Player Stats") | |
with gr.Row(): | |
stats_output = gr.HTML(label="Player Statistics") | |
recent_matches = gr.HTML(label="Recent Matches") | |
with gr.Row(): | |
champion_dropdowns = [ | |
gr.Dropdown(choices=CHAMPIONS, label=f"Champion {i+1}") | |
for i in range(9) | |
] | |
with gr.Row(): | |
predict_button = gr.Button("Predict") | |
prediction_output = gr.Text(label="Prediction") | |
# Set up event handlers | |
show_button.click( | |
fn=show_stats, | |
inputs=[player_opgg_url], | |
outputs=[stats_output, recent_matches] | |
) | |
predict_button.click( | |
fn=predict_champion, | |
inputs=[player_opgg_url] + champion_dropdowns, | |
outputs=prediction_output | |
) | |
# Enable queuing | |
#demo.queue(debug = True) | |
demo.launch(debug=True) | |
# For local testing | |
if __name__ == "__main__": | |
demo.launch() |