import streamlit as st import requests import io # Designing the interface st.title("🖼️ Image Captioning Demo 📝") st.sidebar.markdown( """ An image captioning model by combining ViT model with GPT2 model. The encoder (ViT) and decoder (GPT2) are combined using Hugging Face transformers' [Vision-To-Text Encoder-Decoder framework](https://huggingface.co/transformers/master/model_doc/visionencoderdecoder.html). The pretrained weights of both models are loaded, with a set of randomly initialized cross-attention weights. The model is trained on the COCO 2017 dataset for about 6900 steps (batch_size=256). [Follow-up work of [Huggingface JAX/Flax event](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/).]\n """ ) with st.spinner('Loading and compiling ViT-GPT2 model ...'): from model import * random_image_id = get_random_image_id() st.sidebar.title("Select a sample image") sample_image_id = st.sidebar.selectbox( "Please choose a sample image", sample_image_ids ) if st.sidebar.button("Random COCO 2017 (val) images"): random_image_id = get_random_image_id() sample_image_id = "None" bytes_data = None with st.sidebar.form("file-uploader-form", clear_on_submit=True): uploaded_file = st.file_uploader("Choose a file") submitted = st.form_submit_button("Upload") if submitted and uploaded_file is not None: bytes_data = io.BytesIO(uploaded_file.getvalue()) if (bytes_data is None) and submitted: st.write("No file is selected to upload") else: image_id = random_image_id if sample_image_id != "None": assert type(sample_image_id) == int image_id = sample_image_id sample_name = f"COCO_val2017_{str(image_id).zfill(12)}.jpg" sample_path = os.path.join(sample_dir, sample_name) if bytes_data is not None: image = Image.open(bytes_data) elif os.path.isfile(sample_path): image = Image.open(sample_path) else: url = f"http://images.cocodataset.org/val2017/{str(image_id).zfill(12)}.jpg" image = Image.open(requests.get(url, stream=True).raw) width, height = image.size resized = image.resize(size=(width, height)) if height > 384: width = int(width / height * 384) height = 384 resized = resized.resize(size=(width, height)) width, height = resized.size if width > 512: width = 512 height = int(height / width * 512) resized = resized.resize(size=(width, height)) if bytes_data is None: st.markdown(f"[{str(image_id).zfill(12)}.jpg](http://images.cocodataset.org/val2017/{str(image_id).zfill(12)}.jpg)") show = st.image(resized) show.image(resized, '\n\nSelected Image') resized.close() # For newline st.sidebar.write('\n') with st.spinner('Generating image caption ...'): caption = predict(image) caption_en = caption st.header(f'Predicted caption:\n\n') st.subheader(caption_en) st.sidebar.header("ViT-GPT2 predicts: ") st.sidebar.write(f"{caption}") image.close()