File size: 1,994 Bytes
d29fa84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6d3fa1
d29fa84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6d3fa1
d29fa84
 
 
 
d6d3fa1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
import torch
from umsc import UgMultiScriptConverter
import util 

# Model ID and setup
model_id = 'ixxan/wav2vec2-large-mms-1b-uyghur-latin'
asr_model = Wav2Vec2ForCTC.from_pretrained(model_id, target_lang="uig-script_latin")
asr_processor = Wav2Vec2Processor.from_pretrained(model_id)
asr_processor.tokenizer.set_target_lang("uig-script_latin")

# Automatically allocate the device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
asr_model = asr_model.to(device) 

def asr(user_audio):
    # Load and resample user audio
    audio_input, sampling_rate = util.load_and_resample_audio(file_path = user_audio, target_rate=16000)
    
    # Process audio through ASR model
    inputs = asr_processor(audio_input.squeeze(), sampling_rate=sampling_rate, return_tensors="pt", padding=True)
    inputs = {key: val.to(device) for key, val in inputs.items()}
    with torch.no_grad():
        logits = asr_model(**inputs).logits
        predicted_ids = torch.argmax(logits, dim=-1)
        transcript = asr_processor.batch_decode(predicted_ids)[0]
    return transcript

    
def check_pronunciation(input_text, script, user_audio):
    # Transcripts from user input audio
    transcript_ugLatn_box = asr(user_audio)
    ug_latn_to_arab = UgMultiScriptConverter('ULS', 'UAS')
    transcript_ugArab_box = ug_latn_to_arab(transcript_ugLatn_box)

    # Get IPA and Pronunciation Feedback
    if script == 'Uyghur Latin':
        input_text = ug_latn_to_arab(input_text) # make sure input text is arabic script to IPA conversion
        machine_pronunciation, user_pronunciation, pronunciation_match, pronunciation_score = util.calculate_pronunciation_accuracy(
        reference_text = input_text, 
        output_text = transcript_ugArab_box, 
        language_code='uig-Arab')
    
    return transcript_ugArab_box, transcript_ugLatn_box, machine_pronunciation, user_pronunciation, pronunciation_match, pronunciation_score