File size: 4,267 Bytes
734a7ea d29fa84 734a7ea 175f7a3 734a7ea d29fa84 734a7ea c0b2049 175f7a3 734a7ea d29fa84 efdb44e 734a7ea efdb44e 734a7ea efdb44e d29fa84 18f99c6 d29fa84 43ce49e d29fa84 c03de5c d29fa84 43ce49e d29fa84 aab3ee4 c03de5c aab3ee4 c03de5c 471da93 c03de5c d29fa84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
import random
from umsc import UgMultiScriptConverter
import string
import epitran
from difflib import SequenceMatcher
# Lists of Uyghur short and long texts
short_texts = [
"سالام", "رەھمەت", "ياخشىمۇسىز", "خۇش كېپسىز", "خەيرلىك كۈن", "خەير خوش"
]
long_texts = [
"مەكتەپكە بارغاندا تېخىمۇ بىلىملىك بولۇمەن.",
"يېزا مەنزىرىسى ھەقىقەتەن گۈزەل.",
"بىزنىڭ ئۆيدە تۆت تەكچە، تۆتىلىسى تەك-تەكچە",
"تۆۋەندە ئالىمنىڭ تەرجىمىھالى بىلەن تونۇشۇپ ئۆتەيلى.",
"شېئىردىكى تۇيغۇ ئورنىنى تاپالمىغان ئىستىلىستىكىلىق ۋاسىتە كۆزگە چېلىقمايدۇ."
]
# Front-End Utils
ug_arab_to_latn = UgMultiScriptConverter('UAS', 'ULS')
def generate_short_text(script_choice):
"""Generate a random Uyghur short text based on the type."""
text = random.choice(short_texts)
return ug_arab_to_latn(text) if script_choice == "Uyghur Latin" else text
def generate_long_text(script_choice):
"""Generate a random Uyghur long text based on the type."""
text = random.choice(long_texts)
return ug_arab_to_latn(text) if script_choice == "Uyghur Latin" else text
# ASR Utils
# def load_and_resample_audio(audio_data, target_rate):
# """Load audio and resample based on target sample rate"""
# if isinstance(audio_data, tuple):
# # microphone
# sampling_rate, audio_input = audio_data
# audio_input = (audio_input / 32768.0).astype(np.float32)
# elif isinstance(audio_data, str):
# # file upload
# audio_input, sampling_rate = torchaudio.load(audio_data)
# else:
# return "<<ERROR: Invalid Audio Input Instance: {}>>".format(type(audio_data))
# # Resample if needed
# if sampling_rate != target_rate:
# resampler = torchaudio.transforms.Resample(sampling_rate, target_rate)
# audio_input = resampler(audio_input)
# return audio_input, target_rate
def calculate_pronunciation_accuracy(reference_text, output_text, language_code='uig-Arab'):
"""
Calculate pronunciation accuracy between reference and ASR output text using Epitran.
Args:
reference_text (str): The ground truth text in Uyghur (Arabic script).
output_text (str): The ASR output text in Uyghur (Arabic script).
language_code (str): Epitran language code (default is 'uig-Arab' for Uyghur).
Returns:
float: Pronunciation accuracy as a percentage.
str: IPA transliteration of the reference text.
str: IPA transliteration of the output text.
"""
# Initialize Epitran for Uyghur (Arabic script)
ipa_converter = epitran.Epitran(language_code)
# Remove punctuation from both texts
reference_text_clean = remove_punctuation(reference_text)
output_text_clean = remove_punctuation(output_text)
# Transliterate both texts to IPA
reference_ipa = ipa_converter.transliterate(reference_text_clean)
output_ipa = ipa_converter.transliterate(output_text_clean)
# Calculate pronunciation accuracy using SequenceMatcher
matcher = SequenceMatcher(None, reference_text_clean, output_text_clean)
match_ratio = matcher.ratio() # This is the fraction of matching characters
# Convert to percentage
pronunciation_accuracy = match_ratio * 100
# Generate Markdown-compatible styled text
comparison_md = ""
for opcode, i1, i2, j1, j2 in matcher.get_opcodes():
ref_segment = reference_text_clean[i1:i2]
out_segment = output_text_clean[j1:j2]
if opcode == 'equal': # Matching characters
comparison_md += f'<span style="color: blue;">{ref_segment}</span>'
elif opcode in ['replace', 'delete', 'insert']: # Mismatched or missing
comparison_md += f'<span style="color: black;">{ref_segment}</span>'
comparison_md = f"<div>{comparison_md}</div>"
return reference_ipa, output_ipa, comparison_md, pronunciation_accuracy
def remove_punctuation(text):
"""Helper function to remove punctuation from text."""
return text.translate(str.maketrans('', '', string.punctuation)) |