from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC import torch from umsc import UgMultiScriptConverter import util # Model ID and setup model_id = 'ixxan/wav2vec2-large-mms-1b-uyghur-latin' asr_model = Wav2Vec2ForCTC.from_pretrained(model_id, target_lang="uig-script_latin") asr_processor = Wav2Vec2Processor.from_pretrained(model_id) asr_processor.tokenizer.set_target_lang("uig-script_latin") # Automatically allocate the device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") asr_model = asr_model.to(device) def asr(user_audio): # Load and resample user audio audio_input, sampling_rate = util.load_and_resample_audio(file_path = user_audio, target_rate=16000) # Process audio through ASR model inputs = asr_processor(audio_input.squeeze(), sampling_rate=sampling_rate, return_tensors="pt", padding=True) inputs = {key: val.to(device) for key, val in inputs.items()} with torch.no_grad(): logits = asr_model(**inputs).logits predicted_ids = torch.argmax(logits, dim=-1) transcript = asr_processor.batch_decode(predicted_ids)[0] return transcript def check_pronunciation(input_text, script, user_audio): # Transcripts from user input audio transcript_ugLatn_box = asr(user_audio) ug_latn_to_arab = UgMultiScriptConverter('ULS', 'UAS') transcript_ugArab_box = ug_latn_to_arab(transcript_ugLatn_box) # Get IPA and Pronunciation Feedback if script == 'Uyghur Latin': input_text = ug_latn_to_arab(input_text) # make sure input text is arabic script to IPA conversion machine_pronunciation, user_pronunciation, pronunciation_match, pronunciation_score = util.calculate_pronunciation_accuracy( reference_text = input_text, output_text = transcript_ugArab_box, language_code='uig-Arab') return transcript_ugArab_box, transcript_ugLatn_box, machine_pronunciation, user_pronunciation, pronunciation_match, pronunciation_score