Spaces:
Running
Running
File size: 1,503 Bytes
20aa839 3a18b3b bef8623 a4939e4 20aa839 3a18b3b 20aa839 cafc4cf 3a18b3b ef107e3 3a18b3b 1dfec92 20aa839 e7164c6 20aa839 1dfec92 20aa839 f23608f 20aa839 bef8623 1dfec92 7b99c0e b9ff9e2 bef8623 30e5da4 bef8623 20aa839 bef8623 20aa839 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import gradio as gr
import asr
import tts
# from tts import synthesize
mms_transcribe = gr.Interface(
fn=asr.transcribe,
inputs=[
gr.Audio(),
gr.Dropdown(
choices=[model for model in asr.models_info] + ["Compare All Models"],
label="Select Model for ASR",
value="ixxan/wav2vec2-large-mms-1b-uyghur-latin",
interactive=True
),
],
outputs=[
gr.Textbox(label="Uyghur Arabic Transcription"),
gr.Textbox(label="Uyghur Latin Transcription"),
],
#examples=ASR_EXAMPLES,
title="Speech-to-text",
description=(
"Transcribe Uyghur speech audio from a microphone or input file."
),
#article=ASR_NOTE,
allow_flagging="never",
)
mms_synthesize = gr.Interface(
fn=tts.synthesize,
inputs=[
gr.Text(label="Input text"),
gr.Dropdown(
choices=[model for model in tts.models_info],
label="Select Model for TTS",
value="Meta-MMS",
interactive=True
)
],
outputs=[
gr.Audio(label="Generated Audio"),
],
#examples=TTS_EXAMPLES,
title="Text-to-speech",
description=("Generate audio from input text."),
allow_flagging="never",
)
tabbed_interface = gr.TabbedInterface(
[mms_transcribe, mms_synthesize],
["Speech-to-text", "Text-to-speech"],
)
with gr.Blocks() as demo:
tabbed_interface.render()
if __name__ == "__main__":
demo.queue()
demo.launch() |