Spaces:
Running
Running
izammohammed
commited on
Commit
•
aca2a4f
1
Parent(s):
0c9c133
Upload 4 files
Browse files- helper.py +27 -0
- llama_call.py +55 -0
- openai_call.py +50 -0
- prompt.py +16 -0
helper.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_community.document_loaders import PyPDFLoader, DirectoryLoader
|
2 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
3 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
4 |
+
|
5 |
+
|
6 |
+
# Extract data from the PDF
|
7 |
+
def load_pdf(data):
|
8 |
+
loader = DirectoryLoader(data, glob="*.pdf", loader_cls=PyPDFLoader)
|
9 |
+
|
10 |
+
documents = loader.load()
|
11 |
+
|
12 |
+
return documents
|
13 |
+
|
14 |
+
|
15 |
+
# Create text chunks
|
16 |
+
def text_split(extracted_data):
|
17 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=20)
|
18 |
+
text_chunks = text_splitter.split_documents(extracted_data)
|
19 |
+
|
20 |
+
return text_chunks
|
21 |
+
|
22 |
+
|
23 |
+
def download_hugging_face_embeddings():
|
24 |
+
embeddings = HuggingFaceEmbeddings(
|
25 |
+
model_name="sentence-transformers/all-MiniLM-L6-v2"
|
26 |
+
)
|
27 |
+
return embeddings
|
llama_call.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from src.helper import download_hugging_face_embeddings
|
2 |
+
from langchain_pinecone import PineconeVectorStore
|
3 |
+
from langchain.prompts import PromptTemplate
|
4 |
+
from langchain_community.llms import CTransformers
|
5 |
+
from langchain.chains import RetrievalQA
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
from src.prompt import prompt_template
|
8 |
+
import os
|
9 |
+
|
10 |
+
load_dotenv()
|
11 |
+
|
12 |
+
PINECONE_API_KEY = os.environ.get("PINECONE_API_KEY")
|
13 |
+
PINECONE_API_ENV = os.environ.get("PINECONE_API_ENV")
|
14 |
+
|
15 |
+
|
16 |
+
embeddings = download_hugging_face_embeddings()
|
17 |
+
index_name = "llm-chatbot"
|
18 |
+
|
19 |
+
# Initializing the Pinecone
|
20 |
+
docsearch = PineconeVectorStore.from_existing_index(index_name, embeddings)
|
21 |
+
|
22 |
+
|
23 |
+
PROMPT = PromptTemplate(
|
24 |
+
template=prompt_template, input_variables=["context", "question"]
|
25 |
+
)
|
26 |
+
|
27 |
+
chain_type_kwargs = {"prompt": PROMPT}
|
28 |
+
|
29 |
+
current_dir = os.getcwd()
|
30 |
+
llm = CTransformers(
|
31 |
+
model=os.path.join(current_dir, "saved_models/llama-2-7b-chat.ggmlv3.q4_0.bin"),
|
32 |
+
model_type="llama",
|
33 |
+
streaming=True,
|
34 |
+
config={"max_new_tokens": 256, "temperature": 0.6, "context_length": -1},
|
35 |
+
)
|
36 |
+
|
37 |
+
|
38 |
+
qa = RetrievalQA.from_chain_type(
|
39 |
+
llm=llm,
|
40 |
+
chain_type="stuff",
|
41 |
+
retriever=docsearch.as_retriever(search_kwargs={"k": 2}),
|
42 |
+
return_source_documents=True,
|
43 |
+
chain_type_kwargs=chain_type_kwargs,
|
44 |
+
verbose=True,
|
45 |
+
)
|
46 |
+
|
47 |
+
|
48 |
+
def llama_call(input):
|
49 |
+
result = qa.invoke({"query": input})
|
50 |
+
return str(result["result"])
|
51 |
+
|
52 |
+
|
53 |
+
if __name__ == "__main__":
|
54 |
+
msg = "If a previous owner of a land had allowed a neighbour or neighbour to walk or drive over his land in a shortcut and this has been going on for say a decade or so can I as the new owner stop them now from using the shortcut?"
|
55 |
+
print(f"response: {llama_call(msg)}")
|
openai_call.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from src.helper import download_hugging_face_embeddings
|
2 |
+
from langchain_pinecone import PineconeVectorStore
|
3 |
+
from langchain.prompts import PromptTemplate
|
4 |
+
from langchain_openai import OpenAI
|
5 |
+
from langchain.chains import RetrievalQA
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
from src.prompt import prompt_template
|
8 |
+
import os
|
9 |
+
|
10 |
+
load_dotenv()
|
11 |
+
|
12 |
+
PINECONE_API_KEY = os.environ.get("PINECONE_API_KEY")
|
13 |
+
PINECONE_API_ENV = os.environ.get("PINECONE_API_ENV")
|
14 |
+
|
15 |
+
|
16 |
+
embeddings = download_hugging_face_embeddings()
|
17 |
+
index_name = "llm-chatbot"
|
18 |
+
|
19 |
+
# Initializing the Pinecone
|
20 |
+
docsearch = PineconeVectorStore.from_existing_index(index_name, embeddings)
|
21 |
+
|
22 |
+
|
23 |
+
PROMPT = PromptTemplate(
|
24 |
+
template=prompt_template, input_variables=["context", "question"]
|
25 |
+
)
|
26 |
+
|
27 |
+
chain_type_kwargs = {"prompt": PROMPT}
|
28 |
+
|
29 |
+
current_dir = os.getcwd()
|
30 |
+
llm = OpenAI()
|
31 |
+
|
32 |
+
|
33 |
+
qa = RetrievalQA.from_chain_type(
|
34 |
+
llm=llm,
|
35 |
+
chain_type="stuff",
|
36 |
+
retriever=docsearch.as_retriever(search_kwargs={"k": 2}),
|
37 |
+
return_source_documents=True,
|
38 |
+
chain_type_kwargs=chain_type_kwargs,
|
39 |
+
verbose=True,
|
40 |
+
)
|
41 |
+
|
42 |
+
|
43 |
+
def openai_call(input):
|
44 |
+
result = qa.invoke({"query": input})
|
45 |
+
return str(result["result"])
|
46 |
+
|
47 |
+
|
48 |
+
if __name__ == "__main__":
|
49 |
+
msg = "If a previous owner of a land had allowed a neighbour or neighbour to walk or drive over his land in a shortcut and this has been going on for say a decade or so can I as the new owner stop them now from using the shortcut?"
|
50 |
+
print(f"response: {openai_call(msg)}")
|
prompt.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
prompt_template = """
|
2 |
+
As a seasoned legal advisor, you possess deep knowledge of legal intricacies and are skilled in referencing relevant laws and regulations. Users will seek guidance on various legal matters.
|
3 |
+
|
4 |
+
If a question falls outside the scope of legal expertise, kindly inform the user that your specialization is limited to legal advice.
|
5 |
+
|
6 |
+
In cases where you're uncertain of the answer, it's important to uphold integrity by admitting 'I don't know' rather than providing potentially erroneous information.
|
7 |
+
|
8 |
+
Below is a snippet of context from the relevant section of the constitution, although it will not be disclosed to users.
|
9 |
+
|
10 |
+
Context: {context}
|
11 |
+
Question: {question}
|
12 |
+
|
13 |
+
Your response should consist solely of helpful advice without any extraneous details.
|
14 |
+
|
15 |
+
Helpful advice:
|
16 |
+
"""
|