Spaces:
Runtime error
Runtime error
File size: 30,755 Bytes
342816e 3612a6a 342816e 9d658a2 342816e 46711d5 342816e cdecf9e 6fc6364 46fd0bc cdecf9e 46fd0bc 0d9c9f0 9d658a2 342816e 95e9355 342816e 3612a6a 342816e 3612a6a 342816e 9d658a2 342816e 46711d5 3612a6a 46711d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 |
import gradio as gr
import numpy as np
from PIL import Image, ImageDraw, ImageFont
from collections import Counter
import math
from gradio import processing_utils
from typing import Optional
import warnings
from datetime import datetime
import torch
from PIL import Image
from diffusers import StableDiffusionInpaintPipeline
from accelerate.utils import set_seed
clevr_all_objects = [
'blue metal cube',
'blue metal cylinder',
'blue metal sphere',
'blue rubber cube',
'blue rubber cylinder',
'blue rubber sphere',
'brown metal cube',
'brown metal cylinder',
'brown metal sphere',
'brown rubber cube',
'brown rubber cylinder',
'brown rubber sphere',
'cyan metal cube',
'cyan metal cylinder',
'cyan metal sphere',
'cyan rubber cube',
'cyan rubber cylinder',
'cyan rubber sphere',
'gray metal cube',
'gray metal cylinder',
'gray metal sphere',
'gray rubber cube',
'gray rubber cylinder',
'gray rubber sphere',
'green metal cube',
'green metal cylinder',
'green metal sphere',
'green rubber cube',
'green rubber cylinder',
'green rubber sphere',
'purple metal cube',
'purple metal cylinder',
'purple metal sphere',
'purple rubber cube',
'purple rubber cylinder',
'purple rubber sphere',
'red metal cube',
'red metal cylinder',
'red metal sphere',
'red rubber cube',
'red rubber cylinder',
'red rubber sphere',
'yellow metal cube',
'yellow metal cylinder',
'yellow metal sphere',
'yellow rubber cube',
'yellow rubber cylinder',
'yellow rubber sphere'
]
all_clevr_colors = ['blue', 'brown', 'cyan', 'gray', 'green', 'purple', 'red', 'yellow']
all_clevr_materials = ['metal', 'rubber']
all_clevr_shapes = ['cube', 'cylinder', 'sphere']
class Instance:
def __init__(self, capacity = 2):
self.model_type = 'base'
self.loaded_model_list = {}
self.counter = Counter()
self.global_counter = Counter()
self.capacity = capacity
self.loaded_model = None
def _log(self, model_type, batch_size, instruction, phrase_list):
self.counter[model_type] += 1
self.global_counter[model_type] += 1
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
print('[{}] Current: {}, All: {}. Samples: {}, prompt: {}, phrases: {}'.format(
current_time, dict(self.counter), dict(self.global_counter), batch_size, instruction, phrase_list
))
def get_model(self):
if self.pipe is None:
self.pipe = self.load_model()
if torch.cuda.is_available():
self.pipe.to("cuda")
print("Loaded model to GPU")
return self.pipe
def load_model(self, model_id='j-min/IterInpaint-CLEVR'):
pipe = StableDiffusionInpaintPipeline.from_pretrained(model_id)
def dummy(images, **kwargs):
return images, False
pipe.safety_checker = dummy
print("Disabled safety checker")
print("Loaded model")
if torch.cuda.is_available():
pipe.to("cuda")
print("Loaded model to GPU")
# # This command loads the individual model components on GPU on-demand. So, we don't
# # need to explicitly call pipe.to("cuda").
# pipe.enable_model_cpu_offload()
# # xformers
# pipe.enable_xformers_memory_efficient_attention()
self.pipe = pipe
instance = Instance()
instance.load_model()
from gen_utils import encode_from_custom_annotation, iterinpaint_sample_diffusers
class ImageMask(gr.components.Image):
"""
Sets: source="canvas", tool="sketch"
"""
is_template = True
def __init__(self, **kwargs):
super().__init__(source="upload", tool="sketch", interactive=True, **kwargs)
def preprocess(self, x):
if x is None:
return x
if self.tool == "sketch" and self.source in ["upload", "webcam"] and type(x) != dict:
decode_image = processing_utils.decode_base64_to_image(x)
width, height = decode_image.size
mask = np.zeros((height, width, 4), dtype=np.uint8)
mask[..., -1] = 255
mask = self.postprocess(mask)
x = {'image': x, 'mask': mask}
return super().preprocess(x)
class Blocks(gr.Blocks):
def __init__(
self,
theme: str = "default",
analytics_enabled: Optional[bool] = None,
mode: str = "blocks",
title: str = "Gradio",
css: Optional[str] = None,
**kwargs,
):
self.extra_configs = {
'thumbnail': kwargs.pop('thumbnail', ''),
'url': kwargs.pop('url', 'https://gradio.app/'),
'creator': kwargs.pop('creator', '@teamGradio'),
}
super(Blocks, self).__init__(
theme, analytics_enabled, mode, title, css, **kwargs)
warnings.filterwarnings("ignore")
def get_config_file(self):
config = super(Blocks, self).get_config_file()
for k, v in self.extra_configs.items():
config[k] = v
return config
def draw_box(boxes=[], texts=[], img=None):
if len(boxes) == 0 and img is None:
return None
if img is None:
img = Image.new('RGB', (512, 512), (255, 255, 255))
colors = ["red", "olive", "blue", "green", "orange", "brown", "cyan", "purple"]
draw = ImageDraw.Draw(img)
font = ImageFont.truetype("DejaVuSansMono.ttf", size=20)
for bid, box in enumerate(boxes):
draw.rectangle([box[0], box[1], box[2], box[3]], outline=colors[bid % len(colors)], width=4)
anno_text = texts[bid]
draw.rectangle([box[0], box[3] - int(font.size * 1.2), box[0] + int((len(anno_text) + 0.8) * font.size * 0.6), box[3]], outline=colors[bid % len(colors)], fill=colors[bid % len(colors)], width=4)
draw.text([box[0] + int(font.size * 0.2), box[3] - int(font.size*1.2)], anno_text, font=font, fill=(255,255,255))
return img
def get_concat(ims):
if len(ims) == 1:
n_col = 1
else:
n_col = 2
n_row = math.ceil(len(ims) / 2)
dst = Image.new('RGB', (ims[0].width * n_col, ims[0].height * n_row), color="white")
for i, im in enumerate(ims):
row_id = i // n_col
col_id = i % n_col
dst.paste(im, (im.width * col_id, im.height * row_id))
return dst
def inference(language_instruction, grounding_texts, boxes, guidance_scale):
# custom_annotations = [
# {'x': 19,
# 'y': 61,
# 'width': 158,
# 'height': 169,
# 'label': 'blue metal cube'},
# {'x': 183,
# 'y': 94,
# 'width': 103,
# 'height': 109,
# 'label': 'brown rubber sphere'},
# ]
# # boxes - normalized -> unnormalized
# boxes = np.array(boxes) * 512
custom_annotations = []
for i in range(len(boxes)):
box = boxes[i]
custom_annotations.append({'x': box[0],
'y': box[1],
'width': box[2] - box[0],
'height': box[3] - box[1],
'label': grounding_texts[i]})
# # 1) convert xywh to xyxy
# # 2) normalize coordinates
scene = encode_from_custom_annotation(custom_annotations, size=512)
print(scene['box_captions'])
print(scene['boxes_normalized'])
pipe = instance.get_model()
out = iterinpaint_sample_diffusers(
pipe, scene, paste=True, verbose=True, size=512, guidance_scale=guidance_scale)
final_image = out['generated_images'][-1].copy()
# Create Generation GIF
prompts = out['prompts']
fps = 4
def create_gif_source_images(images, prompts):
"""Create source images for gif
Each frame consists of a intermediate image with a prompt as title.
Don't change size of the original images.
"""
step_images = []
font = ImageFont.truetype("DejaVuSansMono.ttf", size=20)
for i, img in enumerate(images):
draw = ImageDraw.Draw(img)
draw.text((0, 0), prompts[i], (255, 255, 255), font=font)
step_images.append(img)
return step_images
import imageio
step_images = create_gif_source_images(out['generated_images'], prompts)
print("Number of frames in GIF: {}".format(len(step_images)))
# create temp path
import tempfile
import os
gif_save_path = os.path.join(tempfile.gettempdir(), 'gen.gif')
# create gif
imageio.mimsave(gif_save_path, step_images, fps=fps)
print('GIF saved to {}'.format(gif_save_path))
out_images = [
final_image,
gif_save_path
]
return out_images
def generate(task, language_instruction, grounding_texts, sketch_pad,
alpha_sample, guidance_scale, batch_size,
fix_seed, rand_seed, use_actual_mask, append_grounding, style_cond_image,
state):
if 'boxes' not in state:
state['boxes'] = []
boxes = state['boxes']
grounding_texts = [x.strip() for x in grounding_texts.split(';')]
# assert len(boxes) == len(grounding_texts)
# check if object query is within clevr_all_objects
for grounding_text in grounding_texts:
if grounding_text not in clevr_all_objects:
raise ValueError("""The grounding object {} is not in the CLEVR dataset.""".format(grounding_text))
if len(boxes) != len(grounding_texts):
if len(boxes) < len(grounding_texts):
raise ValueError("""The number of boxes should be equal to the number of grounding objects.
Number of boxes drawn: {}, number of grounding tokens: {}.
Please draw boxes accordingly on the sketch pad.""".format(len(boxes), len(grounding_texts)))
grounding_texts = grounding_texts + [""] * (len(boxes) - len(grounding_texts))
# # normalize boxes
# boxes = (np.asarray(boxes) / 512).tolist()
print('input boxes: ', boxes)
print('input grounding_texts: ', grounding_texts)
print('input language instruction: ', language_instruction)
if fix_seed:
set_seed(rand_seed)
print('seed set to: ', rand_seed)
gen_image, gen_animation = inference(
language_instruction, grounding_texts, boxes,
guidance_scale=guidance_scale,
)
# for idx, gen_image in enumerate(gen_images):
# if task == 'Grounded Inpainting' and state.get('inpaint_hw', None):
# hw = min(*state['original_image'].shape[:2])
# gen_image = sized_center_fill(state['original_image'].copy(), np.array(gen_image.resize((hw, hw))), hw, hw)
# gen_image = Image.fromarray(gen_image)
# gen_images[idx] = gen_image
# blank_samples = batch_size % 2 if batch_size > 1 else 0
# gen_images = [gr.Image.update(value=x, visible=True) for i,x in enumerate(gen_images)] \
# + [gr.Image.update(value=None, visible=True) for _ in range(blank_samples)] \
# + [gr.Image.update(value=None, visible=False) for _ in range(4 - batch_size - blank_samples)]
# gen_images = [gr.Image.update(value=x, visible=True) for i,x in enumerate(gen_images)] \
# + [gr.Image.update(value=None, visible=True) for _ in range(blank_samples)] \
gen_images = [
gr.Image.update(value=gen_image, visible=True),
gr.Image.update(value=gen_animation, visible=True)
]
return gen_images + [state]
def binarize(x):
return (x != 0).astype('uint8') * 255
def sized_center_crop(img, cropx, cropy):
y, x = img.shape[:2]
startx = x // 2 - (cropx // 2)
starty = y // 2 - (cropy // 2)
return img[starty:starty+cropy, startx:startx+cropx]
def sized_center_fill(img, fill, cropx, cropy):
y, x = img.shape[:2]
startx = x // 2 - (cropx // 2)
starty = y // 2 - (cropy // 2)
img[starty:starty+cropy, startx:startx+cropx] = fill
return img
def sized_center_mask(img, cropx, cropy):
y, x = img.shape[:2]
startx = x // 2 - (cropx // 2)
starty = y // 2 - (cropy // 2)
center_region = img[starty:starty+cropy, startx:startx+cropx].copy()
img = (img * 0.2).astype('uint8')
img[starty:starty+cropy, startx:startx+cropx] = center_region
return img
def center_crop(img, HW=None, tgt_size=(512, 512)):
if HW is None:
H, W = img.shape[:2]
HW = min(H, W)
img = sized_center_crop(img, HW, HW)
img = Image.fromarray(img)
img = img.resize(tgt_size)
return np.array(img)
def draw(task, input, grounding_texts, new_image_trigger, state):
if type(input) == dict:
image = input['image']
mask = input['mask']
else:
mask = input
if mask.ndim == 3:
mask = mask[..., 0]
image_scale = 1.0
# resize trigger
if task == "Grounded Inpainting":
mask_cond = mask.sum() == 0
# size_cond = mask.shape != (512, 512)
if mask_cond and 'original_image' not in state:
image = Image.fromarray(image)
width, height = image.size
scale = 600 / min(width, height)
image = image.resize((int(width * scale), int(height * scale)))
state['original_image'] = np.array(image).copy()
image_scale = float(height / width)
return [None, new_image_trigger + 1, image_scale, state]
else:
original_image = state['original_image']
H, W = original_image.shape[:2]
image_scale = float(H / W)
mask = binarize(mask)
if mask.shape != (512, 512):
# assert False, "should not receive any non- 512x512 masks."
if 'original_image' in state and state['original_image'].shape[:2] == mask.shape:
mask = center_crop(mask, state['inpaint_hw'])
image = center_crop(state['original_image'], state['inpaint_hw'])
else:
mask = np.zeros((512, 512), dtype=np.uint8)
# mask = center_crop(mask)
mask = binarize(mask)
if type(mask) != np.ndarray:
mask = np.array(mask)
if mask.sum() == 0 and task != "Grounded Inpainting":
state = {}
if task != 'Grounded Inpainting':
image = None
else:
image = Image.fromarray(image)
if 'boxes' not in state:
state['boxes'] = []
if 'masks' not in state or len(state['masks']) == 0:
state['masks'] = []
last_mask = np.zeros_like(mask)
else:
last_mask = state['masks'][-1]
if type(mask) == np.ndarray and mask.size > 1:
diff_mask = mask - last_mask
else:
diff_mask = np.zeros([])
if diff_mask.sum() > 0:
x1x2 = np.where(diff_mask.max(0) != 0)[0]
y1y2 = np.where(diff_mask.max(1) != 0)[0]
y1, y2 = y1y2.min(), y1y2.max()
x1, x2 = x1x2.min(), x1x2.max()
if (x2 - x1 > 5) and (y2 - y1 > 5):
state['masks'].append(mask.copy())
state['boxes'].append((x1, y1, x2, y2))
grounding_texts = [x.strip() for x in grounding_texts.split(';')]
grounding_texts = [x for x in grounding_texts if len(x) > 0]
if len(grounding_texts) < len(state['boxes']):
grounding_texts += [f'Obj. {bid+1}' for bid in range(len(grounding_texts), len(state['boxes']))]
box_image = draw_box(state['boxes'], grounding_texts, image)
if box_image is not None and state.get('inpaint_hw', None):
inpaint_hw = state['inpaint_hw']
box_image_resize = np.array(box_image.resize((inpaint_hw, inpaint_hw)))
original_image = state['original_image'].copy()
box_image = sized_center_fill(original_image, box_image_resize, inpaint_hw, inpaint_hw)
return [box_image, new_image_trigger, image_scale, state]
def clear(task, sketch_pad_trigger, batch_size, state, switch_task=False):
if task != 'Grounded Inpainting':
sketch_pad_trigger = sketch_pad_trigger + 1
blank_samples = batch_size % 2 if batch_size > 1 else 0
# out_images = [gr.Image.update(value=None, visible=True) for i in range(batch_size)] \
# + [gr.Image.update(value=None, visible=True) for _ in range(blank_samples)] \
# + [gr.Image.update(value=None, visible=False) for _ in range(4 - batch_size - blank_samples)]
out_images = [gr.Image.update(value=None, visible=True) for i in range(1)] \
+ [gr.Image.update(value=None, visible=True) for _ in range(1)]
state = {}
return [None, sketch_pad_trigger, None, 1.0] + out_images + [state]
css = """
#img2img_image, #img2img_image > .fixed-height, #img2img_image > .fixed-height > div, #img2img_image > .fixed-height > div > img
{
height: var(--height) !important;
max-height: var(--height) !important;
min-height: var(--height) !important;
}
#paper-info a {
color:#008AD7;
text-decoration: none;
}
#paper-info a:hover {
cursor: pointer;
text-decoration: none;
}
"""
rescale_js = """
function(x) {
const root = document.querySelector('gradio-app').shadowRoot || document.querySelector('gradio-app');
let image_scale = parseFloat(root.querySelector('#image_scale input').value) || 1.0;
const image_width = root.querySelector('#img2img_image').clientWidth;
const target_height = parseInt(image_width * image_scale);
document.body.style.setProperty('--height', `${target_height}px`);
root.querySelectorAll('button.justify-center.rounded')[0].style.display='none';
root.querySelectorAll('button.justify-center.rounded')[1].style.display='none';
return x;
}
"""
with Blocks(
# css=css,
analytics_enabled=False,
title="IterInpaint demo",
) as main:
description = """
<p style="text-align: center; font-weight: bold;">
<span style="font-size: 28px">IterInpaint CLEVR Demo</span>
<br>
<span style="font-size: 18px" id="paper-info">
[<a href="https://layoutbench.github.io" target="_blank">Project Page</a>]
[<a href="https://arxiv.org/abs/2304.06671" target="_blank">Paper</a>]
[<a href="https://github.com/j-min/IterInpaint" target="_blank">GitHub</a>]
</span>
</p>
<span style="font-size: 14px">
<b>IterInpaint</b> is a new baseline for layout-guided image generation.
Unlike previous methods that generate all objects in a single step, IterInpaint decomposes image generation process into multiple steps and uses an inpainting model to update regions step-by-step.
</span>
<br>
<br>
<span style="font-size: 18px" id="instruction">
Instructions:
</span>
<p>
(1) ⌨️ Enter the object names in <em> Region Captions</em>
<br>
Since the model is trained on <a href="https://cs.stanford.edu/people/jcjohns/clevr/" target="_blank">CLEVR</a> dataset, you can use the object names in the form of <b>"[color] [material] [shape]"</b> (e.g., <em>blue metal sphere</em>):
<br>
<ul>
<li>color: <em><color style="color: red">red</color>, <color style="color: cyan">cyan</color>, <color style="color: green">green</color>, <color style="color: blue">blue</color>, <color style="color: yellow">yellow</color>, <color style="color: purple">purple</color>, <color style="color: brown">brown</color>, <color style="color: gray">gray</color></em></li>
<li>material: <em>metal, rubber</em></li>
<li>shape: <em>cylinder, cube, sphere</em></li>
</ul>
(2) 🖱️ Draw their corresponding bounding boxes one by one using <em> Sketch Pad</em> -- the parsed boxes will be displayed automatically.
<br>
For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/j-min/iterinpaint-CLEVR?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a>
</p>
"""
gr.HTML(description)
with gr.Row():
with gr.Column(scale=4):
sketch_pad_trigger = gr.Number(value=0, visible=False)
sketch_pad_resize_trigger = gr.Number(value=0, visible=False)
init_white_trigger = gr.Number(value=0, visible=False)
image_scale = gr.Number(
value=0, elem_id="image_scale", visible=False)
new_image_trigger = gr.Number(value=0, visible=False)
# task = gr.Radio(
# choices=["Grounded Generation", 'Grounded Inpainting'],
# type="value",
# value="Grounded Generation",
# label="Task",
# )
task = gr.State("Grounded Generation")
# language_instruction = gr.Textbox(
# label="Language instruction",
# )
language_instruction = gr.State("")
grounding_instruction = gr.Textbox(
label="""
Region Captions (Separated by semicolon)
e.g., "blue metal cube; red rubber cylinder"
""",
)
with gr.Row():
sketch_pad = ImageMask(
label="Draw bounding boxes", elem_id="img2img_image")
out_imagebox = gr.Image(type="pil", label="Parsed Layout")
with gr.Row():
clear_btn = gr.Button(value='Clear')
gen_btn = gr.Button(value='Generate')
with gr.Accordion("Advanced Options", open=False):
with gr.Column():
# alpha_sample = gr.Slider(
# minimum=0, maximum=1.0, step=0.1, value=0.3, label="Scheduled Sampling (Ο)")
alpha_sample = gr.State(0.3)
guidance_scale = gr.Slider(
minimum=0, maximum=50, step=0.5, value=4.0, label="Guidance Scale")
# batch_size = gr.Slider(
# minimum=1, maximum=4, step=1, value=2, label="Number of Samples")
# batch_size = gr.Slider(
# minimum=1, maximum=1, step=1, value=1, label="Number of Samples")
batch_size = gr.State(1)
# append_grounding = gr.Checkbox(
# value=True, label="Append grounding instructions to the caption")
append_grounding = gr.State(False)
# use_actual_mask = gr.Checkbox(
# value=False, label="Use actual mask for inpainting", visible=False)
use_actual_mask = gr.State(False)
with gr.Row():
# fix_seed = gr.Checkbox(value=True, label="Fixed seed")
fix_seed = gr.State(True)
rand_seed = gr.Slider(
minimum=0, maximum=1000, step=1, value=0, label="Seed")
with gr.Row():
# use_style_cond = gr.Checkbox(
# value=False, label="Enable Style Condition")
# style_cond_image = gr.Image(
# type="pil", label="Style Condition", visible=False, interactive=True)
use_style_cond = gr.State(False)
style_cond_image = gr.State(None)
with gr.Column(scale=3):
gr.HTML(
'<span style="font-size: 20px; font-weight: bold">Generated Image</span>')
# with gr.Row():
out_gen_1 = gr.Image(
type="pil", visible=True, show_label=False)
gr.HTML(
'<span style="font-size: 20px; font-weight: bold">Step-by-Step Animation</span>')
out_gen_2 = gr.Image(
type="pil", visible=True, show_label=False)
# with gr.Row():
# out_gen_3 = gr.Image(
# type="pil", visible=False, show_label=False)
# out_gen_4 = gr.Image(
# type="pil", visible=False, show_label=False)
state = gr.State({})
class Controller:
def __init__(self):
self.calls = 0
self.tracks = 0
self.resizes = 0
self.scales = 0
def init_white(self, init_white_trigger):
self.calls += 1
return np.ones((512, 512), dtype='uint8') * 255, 1.0, init_white_trigger+1
# def change_n_samples(self, n_samples):
# blank_samples = n_samples % 2 if n_samples > 1 else 0
# return [gr.Image.update(visible=True) for _ in range(n_samples + blank_samples)] \
# + [gr.Image.update(visible=False)
# for _ in range(4 - n_samples - blank_samples)]
def resize_centercrop(self, state):
self.resizes += 1
image = state['original_image'].copy()
inpaint_hw = int(0.9 * min(*image.shape[:2]))
state['inpaint_hw'] = inpaint_hw
image_cc = center_crop(image, inpaint_hw)
# print(f'resize triggered {self.resizes}', image.shape, '->', image_cc.shape)
return image_cc, state
def resize_masked(self, state):
self.resizes += 1
image = state['original_image'].copy()
inpaint_hw = int(0.9 * min(*image.shape[:2]))
state['inpaint_hw'] = inpaint_hw
image_mask = sized_center_mask(image, inpaint_hw, inpaint_hw)
state['masked_image'] = image_mask.copy()
# print(f'mask triggered {self.resizes}')
return image_mask, state
def switch_task_hide_cond(self, task):
cond = False
if task == "Grounded Generation":
cond = True
return gr.Checkbox.update(visible=cond, value=False), gr.Image.update(value=None, visible=False), gr.Slider.update(visible=cond), gr.Checkbox.update(visible=(not cond), value=False)
controller = Controller()
main.load(
lambda x: x+1,
inputs=sketch_pad_trigger,
outputs=sketch_pad_trigger,
queue=False)
sketch_pad.edit(
draw,
inputs=[task, sketch_pad, grounding_instruction,
sketch_pad_resize_trigger, state],
outputs=[out_imagebox, sketch_pad_resize_trigger,
image_scale, state],
queue=False,
)
grounding_instruction.change(
draw,
inputs=[task, sketch_pad, grounding_instruction,
sketch_pad_resize_trigger, state],
outputs=[out_imagebox, sketch_pad_resize_trigger,
image_scale, state],
queue=False,
)
clear_btn.click(
clear,
inputs=[task, sketch_pad_trigger, batch_size, state],
outputs=[sketch_pad, sketch_pad_trigger, out_imagebox,
# image_scale, out_gen_1, out_gen_2, out_gen_3, out_gen_4, state],
image_scale, out_gen_1, out_gen_2, state],
queue=False)
# task.change(
# partial(clear, switch_task=True),
# inputs=[task, sketch_pad_trigger, batch_size, state],
# outputs=[sketch_pad, sketch_pad_trigger, out_imagebox,
# image_scale, out_gen_1, out_gen_2, out_gen_3, out_gen_4, state],
# queue=False)
sketch_pad_trigger.change(
controller.init_white,
inputs=[init_white_trigger],
outputs=[sketch_pad, image_scale, init_white_trigger],
queue=False)
sketch_pad_resize_trigger.change(
controller.resize_masked,
inputs=[state],
outputs=[sketch_pad, state],
queue=False)
# batch_size.change(
# controller.change_n_samples,
# inputs=[batch_size],
# outputs=[out_gen_1, out_gen_2, out_gen_3, out_gen_4],
# queue=False)
gen_btn.click(
generate,
inputs=[
task, language_instruction, grounding_instruction, sketch_pad,
alpha_sample, guidance_scale, batch_size,
fix_seed, rand_seed,
use_actual_mask,
append_grounding, style_cond_image,
state,
],
# outputs=[out_gen_1, out_gen_2, out_gen_3, out_gen_4, state],
outputs=[out_gen_1, out_gen_2, state],
queue=True
)
sketch_pad_resize_trigger.change(
None,
None,
sketch_pad_resize_trigger,
_js=rescale_js,
queue=False)
init_white_trigger.change(
None,
None,
init_white_trigger,
_js=rescale_js,
queue=False)
# use_style_cond.change(
# lambda cond: gr.Image.update(visible=cond),
# use_style_cond,
# style_cond_image,
# queue=False)
# task.change(
# controller.switch_task_hide_cond,
# inputs=task,
# outputs=[use_style_cond, style_cond_image,
# alpha_sample, use_actual_mask],
# queue=False)
with gr.Column():
gr.Examples(
examples=[
[
"images/blank.png",
"blue metal cube; red rubber sphere",
],
[
"images/blank.png",
"green metal cube; red metal sphere; brown rubber cube",
],
[
"images/blank.png",
"blue metal cube; brown rubber sphere; gray metal sphere; yellow rubber cylinder; gray metal cylinder; cyan rubber sphere; green rubber cube; red metal cylinder",
]
],
inputs=[
sketch_pad,
grounding_instruction
],
outputs=None,
fn=None,
cache_examples=False,
)
thank_desc = """
Thanks
<a href="https://huggingface.co/spaces/gligen/demo" target="_blank">GLIGEN demo</a>, for providing bounding box parsing module.
"""
gr.HTML(thank_desc)
main.queue(concurrency_count=1, api_open=False)
main.launch(share=False, show_api=False, show_error=True)
# main.launch(
# server_name="0.0.0.0",
# share=True,
# server_port=7899,
# show_api=False, show_error=True
# )
|