import gradio as gr import numpy as np from PIL import Image, ImageDraw, ImageFont from collections import Counter import math from gradio import processing_utils from typing import Optional import warnings from datetime import datetime import torch from PIL import Image from diffusers import StableDiffusionInpaintPipeline from accelerate.utils import set_seed class Instance: def __init__(self, capacity = 2): self.model_type = 'base' self.loaded_model_list = {} self.counter = Counter() self.global_counter = Counter() self.capacity = capacity self.loaded_model = None def _log(self, model_type, batch_size, instruction, phrase_list): self.counter[model_type] += 1 self.global_counter[model_type] += 1 current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") print('[{}] Current: {}, All: {}. Samples: {}, prompt: {}, phrases: {}'.format( current_time, dict(self.counter), dict(self.global_counter), batch_size, instruction, phrase_list )) def get_model(self): if self.loaded_model is None: self.loaded_model = self.load_model() return self.loaded_model def load_model(self, model_id='j-min/IterInpaint-CLEVR'): pipe = StableDiffusionInpaintPipeline.from_pretrained(model_id) def dummy(images, **kwargs): return images, False pipe.safety_checker = dummy print("Disabled safety checker") print("Loaded model") # This command loads the individual model components on GPU on-demand. So, we don't # need to explicitly call pipe.to("cuda"). pipe.enable_model_cpu_offload() # xformers pipe.enable_xformers_memory_efficient_attention() return pipe instance = Instance() instance.load_model() from gen_utils import encode_from_custom_annotation, iterinpaint_sample_diffusers class ImageMask(gr.components.Image): """ Sets: source="canvas", tool="sketch" """ is_template = True def __init__(self, **kwargs): super().__init__(source="upload", tool="sketch", interactive=True, **kwargs) def preprocess(self, x): if x is None: return x if self.tool == "sketch" and self.source in ["upload", "webcam"] and type(x) != dict: decode_image = processing_utils.decode_base64_to_image(x) width, height = decode_image.size mask = np.zeros((height, width, 4), dtype=np.uint8) mask[..., -1] = 255 mask = self.postprocess(mask) x = {'image': x, 'mask': mask} return super().preprocess(x) class Blocks(gr.Blocks): def __init__( self, theme: str = "default", analytics_enabled: Optional[bool] = None, mode: str = "blocks", title: str = "Gradio", css: Optional[str] = None, **kwargs, ): self.extra_configs = { 'thumbnail': kwargs.pop('thumbnail', ''), 'url': kwargs.pop('url', 'https://gradio.app/'), 'creator': kwargs.pop('creator', '@teamGradio'), } super(Blocks, self).__init__( theme, analytics_enabled, mode, title, css, **kwargs) warnings.filterwarnings("ignore") def get_config_file(self): config = super(Blocks, self).get_config_file() for k, v in self.extra_configs.items(): config[k] = v return config def draw_box(boxes=[], texts=[], img=None): if len(boxes) == 0 and img is None: return None if img is None: img = Image.new('RGB', (512, 512), (255, 255, 255)) colors = ["red", "olive", "blue", "green", "orange", "brown", "cyan", "purple"] draw = ImageDraw.Draw(img) font = ImageFont.truetype("DejaVuSansMono.ttf", size=20) for bid, box in enumerate(boxes): draw.rectangle([box[0], box[1], box[2], box[3]], outline=colors[bid % len(colors)], width=4) anno_text = texts[bid] draw.rectangle([box[0], box[3] - int(font.size * 1.2), box[0] + int((len(anno_text) + 0.8) * font.size * 0.6), box[3]], outline=colors[bid % len(colors)], fill=colors[bid % len(colors)], width=4) draw.text([box[0] + int(font.size * 0.2), box[3] - int(font.size*1.2)], anno_text, font=font, fill=(255,255,255)) return img def get_concat(ims): if len(ims) == 1: n_col = 1 else: n_col = 2 n_row = math.ceil(len(ims) / 2) dst = Image.new('RGB', (ims[0].width * n_col, ims[0].height * n_row), color="white") for i, im in enumerate(ims): row_id = i // n_col col_id = i % n_col dst.paste(im, (im.width * col_id, im.height * row_id)) return dst def inference(language_instruction, grounding_texts, boxes, guidance_scale): # custom_annotations = [ # {'x': 19, # 'y': 61, # 'width': 158, # 'height': 169, # 'label': 'blue metal cube'}, # {'x': 183, # 'y': 94, # 'width': 103, # 'height': 109, # 'label': 'brown rubber sphere'}, # ] # # boxes - normalized -> unnormalized # boxes = np.array(boxes) * 512 custom_annotations = [] for i in range(len(boxes)): box = boxes[i] custom_annotations.append({'x': box[0], 'y': box[1], 'width': box[2] - box[0], 'height': box[3] - box[1], 'label': grounding_texts[i]}) # # 1) convert xywh to xyxy # # 2) normalize coordinates scene = encode_from_custom_annotation(custom_annotations, size=512) print(scene['box_captions']) print(scene['boxes_normalized']) pipe = instance.get_model() out = iterinpaint_sample_diffusers( pipe, scene, paste=True, verbose=True, size=512, guidance_scale=guidance_scale) final_image = out['generated_images'][-1].copy() # Create Generation GIF prompts = out['prompts'] fps = 4 def create_gif_source_images(images, prompts): """Create source images for gif Each frame consists of a intermediate image with a prompt as title. Don't change size of the original images. """ step_images = [] font = ImageFont.truetype("DejaVuSansMono.ttf", size=20) for i, img in enumerate(images): draw = ImageDraw.Draw(img) draw.text((0, 0), prompts[i], (255, 255, 255), font=font) step_images.append(img) return step_images import imageio step_images = create_gif_source_images(out['generated_images'], prompts) print("Number of frames in GIF: {}".format(len(step_images))) # create temp path import tempfile import os gif_save_path = os.path.join(tempfile.gettempdir(), 'gen.gif') # create gif imageio.mimsave(gif_save_path, step_images, fps=fps) print('GIF saved to {}'.format(gif_save_path)) out_images = [ final_image, gif_save_path ] return out_images def generate(task, language_instruction, grounding_texts, sketch_pad, alpha_sample, guidance_scale, batch_size, fix_seed, rand_seed, use_actual_mask, append_grounding, style_cond_image, state): if 'boxes' not in state: state['boxes'] = [] boxes = state['boxes'] grounding_texts = [x.strip() for x in grounding_texts.split(';')] # assert len(boxes) == len(grounding_texts) if len(boxes) != len(grounding_texts): if len(boxes) < len(grounding_texts): raise ValueError("""The number of boxes should be equal to the number of grounding objects. Number of boxes drawn: {}, number of grounding tokens: {}. Please draw boxes accordingly on the sketch pad.""".format(len(boxes), len(grounding_texts))) grounding_texts = grounding_texts + [""] * (len(boxes) - len(grounding_texts)) # # normalize boxes # boxes = (np.asarray(boxes) / 512).tolist() print('input boxes: ', boxes) print('input grounding_texts: ', grounding_texts) print('input language instruction: ', language_instruction) if fix_seed: set_seed(rand_seed) print('seed set to: ', rand_seed) gen_image, gen_animation = inference( language_instruction, grounding_texts, boxes, guidance_scale=guidance_scale, ) # for idx, gen_image in enumerate(gen_images): # if task == 'Grounded Inpainting' and state.get('inpaint_hw', None): # hw = min(*state['original_image'].shape[:2]) # gen_image = sized_center_fill(state['original_image'].copy(), np.array(gen_image.resize((hw, hw))), hw, hw) # gen_image = Image.fromarray(gen_image) # gen_images[idx] = gen_image # blank_samples = batch_size % 2 if batch_size > 1 else 0 # gen_images = [gr.Image.update(value=x, visible=True) for i,x in enumerate(gen_images)] \ # + [gr.Image.update(value=None, visible=True) for _ in range(blank_samples)] \ # + [gr.Image.update(value=None, visible=False) for _ in range(4 - batch_size - blank_samples)] # gen_images = [gr.Image.update(value=x, visible=True) for i,x in enumerate(gen_images)] \ # + [gr.Image.update(value=None, visible=True) for _ in range(blank_samples)] \ gen_images = [ gr.Image.update(value=gen_image, visible=True), gr.Image.update(value=gen_animation, visible=True) ] return gen_images + [state] def binarize(x): return (x != 0).astype('uint8') * 255 def sized_center_crop(img, cropx, cropy): y, x = img.shape[:2] startx = x // 2 - (cropx // 2) starty = y // 2 - (cropy // 2) return img[starty:starty+cropy, startx:startx+cropx] def sized_center_fill(img, fill, cropx, cropy): y, x = img.shape[:2] startx = x // 2 - (cropx // 2) starty = y // 2 - (cropy // 2) img[starty:starty+cropy, startx:startx+cropx] = fill return img def sized_center_mask(img, cropx, cropy): y, x = img.shape[:2] startx = x // 2 - (cropx // 2) starty = y // 2 - (cropy // 2) center_region = img[starty:starty+cropy, startx:startx+cropx].copy() img = (img * 0.2).astype('uint8') img[starty:starty+cropy, startx:startx+cropx] = center_region return img def center_crop(img, HW=None, tgt_size=(512, 512)): if HW is None: H, W = img.shape[:2] HW = min(H, W) img = sized_center_crop(img, HW, HW) img = Image.fromarray(img) img = img.resize(tgt_size) return np.array(img) def draw(task, input, grounding_texts, new_image_trigger, state): if type(input) == dict: image = input['image'] mask = input['mask'] else: mask = input if mask.ndim == 3: mask = mask[..., 0] image_scale = 1.0 # resize trigger if task == "Grounded Inpainting": mask_cond = mask.sum() == 0 # size_cond = mask.shape != (512, 512) if mask_cond and 'original_image' not in state: image = Image.fromarray(image) width, height = image.size scale = 600 / min(width, height) image = image.resize((int(width * scale), int(height * scale))) state['original_image'] = np.array(image).copy() image_scale = float(height / width) return [None, new_image_trigger + 1, image_scale, state] else: original_image = state['original_image'] H, W = original_image.shape[:2] image_scale = float(H / W) mask = binarize(mask) if mask.shape != (512, 512): # assert False, "should not receive any non- 512x512 masks." if 'original_image' in state and state['original_image'].shape[:2] == mask.shape: mask = center_crop(mask, state['inpaint_hw']) image = center_crop(state['original_image'], state['inpaint_hw']) else: mask = np.zeros((512, 512), dtype=np.uint8) # mask = center_crop(mask) mask = binarize(mask) if type(mask) != np.ndarray: mask = np.array(mask) if mask.sum() == 0 and task != "Grounded Inpainting": state = {} if task != 'Grounded Inpainting': image = None else: image = Image.fromarray(image) if 'boxes' not in state: state['boxes'] = [] if 'masks' not in state or len(state['masks']) == 0: state['masks'] = [] last_mask = np.zeros_like(mask) else: last_mask = state['masks'][-1] if type(mask) == np.ndarray and mask.size > 1: diff_mask = mask - last_mask else: diff_mask = np.zeros([]) if diff_mask.sum() > 0: x1x2 = np.where(diff_mask.max(0) != 0)[0] y1y2 = np.where(diff_mask.max(1) != 0)[0] y1, y2 = y1y2.min(), y1y2.max() x1, x2 = x1x2.min(), x1x2.max() if (x2 - x1 > 5) and (y2 - y1 > 5): state['masks'].append(mask.copy()) state['boxes'].append((x1, y1, x2, y2)) grounding_texts = [x.strip() for x in grounding_texts.split(';')] grounding_texts = [x for x in grounding_texts if len(x) > 0] if len(grounding_texts) < len(state['boxes']): grounding_texts += [f'Obj. {bid+1}' for bid in range(len(grounding_texts), len(state['boxes']))] box_image = draw_box(state['boxes'], grounding_texts, image) if box_image is not None and state.get('inpaint_hw', None): inpaint_hw = state['inpaint_hw'] box_image_resize = np.array(box_image.resize((inpaint_hw, inpaint_hw))) original_image = state['original_image'].copy() box_image = sized_center_fill(original_image, box_image_resize, inpaint_hw, inpaint_hw) return [box_image, new_image_trigger, image_scale, state] def clear(task, sketch_pad_trigger, batch_size, state, switch_task=False): if task != 'Grounded Inpainting': sketch_pad_trigger = sketch_pad_trigger + 1 blank_samples = batch_size % 2 if batch_size > 1 else 0 # out_images = [gr.Image.update(value=None, visible=True) for i in range(batch_size)] \ # + [gr.Image.update(value=None, visible=True) for _ in range(blank_samples)] \ # + [gr.Image.update(value=None, visible=False) for _ in range(4 - batch_size - blank_samples)] out_images = [gr.Image.update(value=None, visible=True) for i in range(1)] \ + [gr.Image.update(value=None, visible=True) for _ in range(1)] state = {} return [None, sketch_pad_trigger, None, 1.0] + out_images + [state] css = """ #img2img_image, #img2img_image > .fixed-height, #img2img_image > .fixed-height > div, #img2img_image > .fixed-height > div > img { height: var(--height) !important; max-height: var(--height) !important; min-height: var(--height) !important; } #paper-info a { color:#008AD7; text-decoration: none; } #paper-info a:hover { cursor: pointer; text-decoration: none; } """ rescale_js = """ function(x) { const root = document.querySelector('gradio-app').shadowRoot || document.querySelector('gradio-app'); let image_scale = parseFloat(root.querySelector('#image_scale input').value) || 1.0; const image_width = root.querySelector('#img2img_image').clientWidth; const target_height = parseInt(image_width * image_scale); document.body.style.setProperty('--height', `${target_height}px`); root.querySelectorAll('button.justify-center.rounded')[0].style.display='none'; root.querySelectorAll('button.justify-center.rounded')[1].style.display='none'; return x; } """ with Blocks( # css=css, analytics_enabled=False, title="IterInpaint demo", ) as main: description = """

IterInpaint CLEVR Demo
[Project Page] [Paper] [GitHub]

IterInpaint is a new baseline for layout-guided image generation. Unlike previous methods that generate all objects in a single step, IterInpaint decomposes image generation process into multiple steps and uses an inpainting model to update regions step-by-step.

Instructions:

(1) ⌨️ Enter the object names in Region Captions
(2) 🖱️ Draw their corresponding bounding boxes one by one using Sketch Pad -- the parsed boxes will be displayed automatically.
For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. Duplicate Space

""" gr.HTML(description) with gr.Row(): with gr.Column(scale=4): sketch_pad_trigger = gr.Number(value=0, visible=False) sketch_pad_resize_trigger = gr.Number(value=0, visible=False) init_white_trigger = gr.Number(value=0, visible=False) image_scale = gr.Number( value=0, elem_id="image_scale", visible=False) new_image_trigger = gr.Number(value=0, visible=False) # task = gr.Radio( # choices=["Grounded Generation", 'Grounded Inpainting'], # type="value", # value="Grounded Generation", # label="Task", # ) task = gr.State("Grounded Generation") # language_instruction = gr.Textbox( # label="Language instruction", # ) language_instruction = gr.State("") grounding_instruction = gr.Textbox( label=""" Region Captions (Separated by semicolon) e.g., "blue metal cube; red rubber cylinder" """, ) with gr.Row(): sketch_pad = ImageMask( label="Draw bounding boxes", elem_id="img2img_image") out_imagebox = gr.Image(type="pil", label="Parsed Layout") with gr.Row(): clear_btn = gr.Button(value='Clear') gen_btn = gr.Button(value='Generate') with gr.Accordion("Advanced Options", open=False): with gr.Column(): # alpha_sample = gr.Slider( # minimum=0, maximum=1.0, step=0.1, value=0.3, label="Scheduled Sampling (τ)") alpha_sample = gr.State(0.3) guidance_scale = gr.Slider( minimum=0, maximum=50, step=0.5, value=4.0, label="Guidance Scale") # batch_size = gr.Slider( # minimum=1, maximum=4, step=1, value=2, label="Number of Samples") # batch_size = gr.Slider( # minimum=1, maximum=1, step=1, value=1, label="Number of Samples") batch_size = gr.State(1) # append_grounding = gr.Checkbox( # value=True, label="Append grounding instructions to the caption") append_grounding = gr.State(False) # use_actual_mask = gr.Checkbox( # value=False, label="Use actual mask for inpainting", visible=False) use_actual_mask = gr.State(False) with gr.Row(): # fix_seed = gr.Checkbox(value=True, label="Fixed seed") fix_seed = gr.State(True) rand_seed = gr.Slider( minimum=0, maximum=1000, step=1, value=0, label="Seed") with gr.Row(): # use_style_cond = gr.Checkbox( # value=False, label="Enable Style Condition") # style_cond_image = gr.Image( # type="pil", label="Style Condition", visible=False, interactive=True) use_style_cond = gr.State(False) style_cond_image = gr.State(None) with gr.Column(scale=3): gr.HTML( 'Generated Image') # with gr.Row(): out_gen_1 = gr.Image( type="pil", visible=True, show_label=False) gr.HTML( 'Step-by-Step Animation') out_gen_2 = gr.Image( type="pil", visible=True, show_label=False) # with gr.Row(): # out_gen_3 = gr.Image( # type="pil", visible=False, show_label=False) # out_gen_4 = gr.Image( # type="pil", visible=False, show_label=False) state = gr.State({}) class Controller: def __init__(self): self.calls = 0 self.tracks = 0 self.resizes = 0 self.scales = 0 def init_white(self, init_white_trigger): self.calls += 1 return np.ones((512, 512), dtype='uint8') * 255, 1.0, init_white_trigger+1 # def change_n_samples(self, n_samples): # blank_samples = n_samples % 2 if n_samples > 1 else 0 # return [gr.Image.update(visible=True) for _ in range(n_samples + blank_samples)] \ # + [gr.Image.update(visible=False) # for _ in range(4 - n_samples - blank_samples)] def resize_centercrop(self, state): self.resizes += 1 image = state['original_image'].copy() inpaint_hw = int(0.9 * min(*image.shape[:2])) state['inpaint_hw'] = inpaint_hw image_cc = center_crop(image, inpaint_hw) # print(f'resize triggered {self.resizes}', image.shape, '->', image_cc.shape) return image_cc, state def resize_masked(self, state): self.resizes += 1 image = state['original_image'].copy() inpaint_hw = int(0.9 * min(*image.shape[:2])) state['inpaint_hw'] = inpaint_hw image_mask = sized_center_mask(image, inpaint_hw, inpaint_hw) state['masked_image'] = image_mask.copy() # print(f'mask triggered {self.resizes}') return image_mask, state def switch_task_hide_cond(self, task): cond = False if task == "Grounded Generation": cond = True return gr.Checkbox.update(visible=cond, value=False), gr.Image.update(value=None, visible=False), gr.Slider.update(visible=cond), gr.Checkbox.update(visible=(not cond), value=False) controller = Controller() main.load( lambda x: x+1, inputs=sketch_pad_trigger, outputs=sketch_pad_trigger, queue=False) sketch_pad.edit( draw, inputs=[task, sketch_pad, grounding_instruction, sketch_pad_resize_trigger, state], outputs=[out_imagebox, sketch_pad_resize_trigger, image_scale, state], queue=False, ) grounding_instruction.change( draw, inputs=[task, sketch_pad, grounding_instruction, sketch_pad_resize_trigger, state], outputs=[out_imagebox, sketch_pad_resize_trigger, image_scale, state], queue=False, ) clear_btn.click( clear, inputs=[task, sketch_pad_trigger, batch_size, state], outputs=[sketch_pad, sketch_pad_trigger, out_imagebox, # image_scale, out_gen_1, out_gen_2, out_gen_3, out_gen_4, state], image_scale, out_gen_1, out_gen_2, state], queue=False) # task.change( # partial(clear, switch_task=True), # inputs=[task, sketch_pad_trigger, batch_size, state], # outputs=[sketch_pad, sketch_pad_trigger, out_imagebox, # image_scale, out_gen_1, out_gen_2, out_gen_3, out_gen_4, state], # queue=False) sketch_pad_trigger.change( controller.init_white, inputs=[init_white_trigger], outputs=[sketch_pad, image_scale, init_white_trigger], queue=False) sketch_pad_resize_trigger.change( controller.resize_masked, inputs=[state], outputs=[sketch_pad, state], queue=False) # batch_size.change( # controller.change_n_samples, # inputs=[batch_size], # outputs=[out_gen_1, out_gen_2, out_gen_3, out_gen_4], # queue=False) gen_btn.click( generate, inputs=[ task, language_instruction, grounding_instruction, sketch_pad, alpha_sample, guidance_scale, batch_size, fix_seed, rand_seed, use_actual_mask, append_grounding, style_cond_image, state, ], # outputs=[out_gen_1, out_gen_2, out_gen_3, out_gen_4, state], outputs=[out_gen_1, out_gen_2, state], queue=True ) sketch_pad_resize_trigger.change( None, None, sketch_pad_resize_trigger, _js=rescale_js, queue=False) init_white_trigger.change( None, None, init_white_trigger, _js=rescale_js, queue=False) # use_style_cond.change( # lambda cond: gr.Image.update(visible=cond), # use_style_cond, # style_cond_image, # queue=False) # task.change( # controller.switch_task_hide_cond, # inputs=task, # outputs=[use_style_cond, style_cond_image, # alpha_sample, use_actual_mask], # queue=False) with gr.Column(): gr.Examples( examples=[ [ "images/blank.png", "blue metal cube", ], [ "images/blank.png", "green metal cube; red metal sphere; brown rubber cube", ], [ "images/blank.png", "blue metal cube; brown rubber sphere; gray metal sphere; yellow rubber cylinder; gray metal cylinder; cyan rubber sphere; green rubber cube; red metal cylinder", ] ], inputs=[ sketch_pad, grounding_instruction ], outputs=None, fn=None, cache_examples=False, ) thank_desc = """ Thanks GLIGEN demo, for providing bounding box parsing module. """ gr.HTML(thank_desc) main.queue(concurrency_count=1, api_open=False) main.launch(share=False, show_api=False, show_error=True) # main.launch( # server_name="0.0.0.0", # share=True, # # server_port=7864, # show_api=False, show_error=True # )