Spaces:
Runtime error
Runtime error
File size: 16,955 Bytes
d4ab5ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
import pytorch_lightning as pl
import torch
import torch.nn.functional as F
from .gates import DiffMaskGateInput
from argparse import ArgumentParser
from math import sqrt
from pytorch_lightning.core.optimizer import LightningOptimizer
from torch import Tensor
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler
from transformers import (
get_constant_schedule_with_warmup,
get_constant_schedule,
ViTForImageClassification,
)
from transformers.models.vit.configuration_vit import ViTConfig
from typing import Optional, Union
from utils.getters_setters import vit_getter, vit_setter
from utils.metrics import accuracy_precision_recall_f1
from utils.optimizer import LookaheadAdam
class ImageInterpretationNet(pl.LightningModule):
@staticmethod
def add_model_specific_args(parent_parser: ArgumentParser) -> ArgumentParser:
parser = parent_parser.add_argument_group("Vision DiffMask")
parser.add_argument(
"--alpha",
type=float,
default=20.0,
help="Initial value for the Lagrangian",
)
parser.add_argument(
"--lr",
type=float,
default=2e-5,
help="Learning rate for DiffMask.",
)
parser.add_argument(
"--eps",
type=float,
default=0.1,
help="KL divergence tolerance.",
)
parser.add_argument(
"--no_placeholder",
action="store_true",
help="Whether to not use placeholder",
)
parser.add_argument(
"--lr_placeholder",
type=float,
default=1e-3,
help="Learning for mask vectors.",
)
parser.add_argument(
"--lr_alpha",
type=float,
default=0.3,
help="Learning rate for lagrangian optimizer.",
)
parser.add_argument(
"--mul_activation",
type=float,
default=15.0,
help="Value to multiply gate activations.",
)
parser.add_argument(
"--add_activation",
type=float,
default=8.0,
help="Value to add to gate activations.",
)
parser.add_argument(
"--weighted_layer_distribution",
action="store_true",
help="Whether to use a weighted distribution when picking a layer in DiffMask forward.",
)
return parent_parser
# Declare variables that will be initialized later
model: ViTForImageClassification
def __init__(
self,
model_cfg: ViTConfig,
alpha: float = 1,
lr: float = 3e-4,
eps: float = 0.1,
eps_valid: float = 0.8,
acc_valid: float = 0.75,
lr_placeholder: float = 1e-3,
lr_alpha: float = 0.3,
mul_activation: float = 10.0,
add_activation: float = 5.0,
placeholder: bool = True,
weighted_layer_pred: bool = False,
):
"""A PyTorch Lightning Module for the VisionDiffMask model on the Vision Transformer.
Args:
model_cfg (ViTConfig): the configuration of the Vision Transformer model
alpha (float): the initial value for the Lagrangian
lr (float): the learning rate for the DiffMask gates
eps (float): the tolerance for the KL divergence
eps_valid (float): the tolerance for the KL divergence in the validation step
acc_valid (float): the accuracy threshold for the validation step
lr_placeholder (float): the learning rate for the learnable masking embeddings
lr_alpha (float): the learning rate for the Lagrangian
mul_activation (float): the value to multiply the gate activations by
add_activation (float): the value to add to the gate activations
placeholder (bool): whether to use placeholder embeddings or a zero vector
weighted_layer_pred (bool): whether to use a weighted distribution when picking a layer
"""
super().__init__()
# Save the hyperparameters
self.save_hyperparameters()
# Create DiffMask instance
self.gate = DiffMaskGateInput(
hidden_size=model_cfg.hidden_size,
hidden_attention=model_cfg.hidden_size // 4,
num_hidden_layers=model_cfg.num_hidden_layers + 2,
max_position_embeddings=1,
mul_activation=mul_activation,
add_activation=add_activation,
placeholder=placeholder,
)
# Create the Lagrangian values for the dual optimization
self.alpha = torch.nn.ParameterList(
[
torch.nn.Parameter(torch.ones(()) * alpha)
for _ in range(model_cfg.num_hidden_layers + 2)
]
)
# Register buffers for running metrics
self.register_buffer(
"running_acc", torch.ones((model_cfg.num_hidden_layers + 2,))
)
self.register_buffer(
"running_l0", torch.ones((model_cfg.num_hidden_layers + 2,))
)
self.register_buffer(
"running_steps", torch.zeros((model_cfg.num_hidden_layers + 2,))
)
def set_vision_transformer(self, model: ViTForImageClassification):
"""Set the Vision Transformer model to be used with this module."""
# Save the model instance as a class attribute
self.model = model
# Freeze the model's parameters
for param in self.model.parameters():
param.requires_grad = False
def forward_explainer(
self, x: Tensor, attribution: bool = False
) -> tuple[Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, int, int]:
"""Performs a forward pass through the explainer (VisionDiffMask) model."""
# Get the original logits and hidden states from the model
logits_orig, hidden_states = vit_getter(self.model, x)
# Add [CLS] token to deal with shape mismatch in self.gate() call
patch_embeddings = hidden_states[0]
batch_size = len(patch_embeddings)
cls_tokens = self.model.vit.embeddings.cls_token.expand(batch_size, -1, -1)
hidden_states[0] = torch.cat((cls_tokens, patch_embeddings), dim=1)
# Select the layer to generate the mask from in this pass
n_hidden = len(hidden_states)
if self.hparams.weighted_layer_pred:
# If weighted layer prediction is enabled, use a weighted distribution
# instead of uniformly picking a layer after a number of steps
low_weight = (
lambda i: self.running_acc[i] > 0.75
and self.running_l0[i] < 0.1
and self.running_steps[i] > 100
)
layers = torch.tensor(list(range(n_hidden)))
p = torch.tensor([0.1 if low_weight(i) else 1 for i in range(n_hidden)])
p = p / p.sum()
idx = p.multinomial(num_samples=1)
layer_pred = layers[idx].item()
else:
layer_pred = torch.randint(n_hidden, ()).item()
# Set the layer to drop to 0, since we are only interested in masking the input
layer_drop = 0
(
new_hidden_state,
gates,
expected_L0,
gates_full,
expected_L0_full,
) = self.gate(
hidden_states=hidden_states,
layer_pred=None
if attribution
else layer_pred, # if attribution, we get all the hidden states
)
# Create the list of the new hidden states for the new forward pass
new_hidden_states = (
[None] * layer_drop
+ [new_hidden_state]
+ [None] * (n_hidden - layer_drop - 1)
)
# Get the new logits from the masked input
logits, _ = vit_setter(self.model, x, new_hidden_states)
return (
logits,
logits_orig,
gates,
expected_L0,
gates_full,
expected_L0_full,
layer_drop,
layer_pred,
)
def get_mask(self, x: Tensor,
idx: int = -1,
aggregated_mask: bool = True,
) -> dict[str, Tensor]:
"""
Generates a mask for the given input.
Args:
x: the input to generate the mask for
idx: the index of the layer to generate the mask from
aggregated_mask: whether to use an aggregative mask from each layer
Returns:
a dictionary containing the mask, kl divergence and the predicted class
"""
# Pass from forward explainer with attribution=True
(
logits,
logits_orig,
gates,
expected_L0,
gates_full,
expected_L0_full,
layer_drop,
layer_pred,
) = self.forward_explainer(x, attribution=True)
# Calculate KL-divergence
kl_div = torch.distributions.kl_divergence(
torch.distributions.Categorical(logits=logits_orig),
torch.distributions.Categorical(logits=logits),
)
# Get predicted class
pred_class = logits.argmax(-1)
# Calculate mask
if aggregated_mask:
mask = expected_L0_full[:, :, idx].exp()
else:
mask = gates_full[:, :, idx]
mask = mask[:, 1:]
C, H, W = x.shape[1:] # channels, height, width
B, P = mask.shape # batch, patches
N = int(sqrt(P)) # patches per side
S = int(H / N) # patch size
# Reshape mask to match input shape
mask = mask.reshape(B, 1, N, N)
mask = F.interpolate(mask, scale_factor=S)
mask = mask.reshape(B, H, W)
return {"mask": mask, "kl_div": kl_div, "pred_class": pred_class}
def forward(self, x: Tensor) -> Tensor:
return self.model(x).logits
def training_step(self, batch: tuple[Tensor, Tensor], *args, **kwargs) -> dict:
# Unpack the batch
x, y = batch
# Pass the batch through the explainer (VisionDiffMask) model
(
logits,
logits_orig,
gates,
expected_L0,
gates_full,
expected_L0_full,
layer_drop,
layer_pred,
) = self.forward_explainer(x)
# Calculate the KL-divergence loss term
loss_c = (
torch.distributions.kl_divergence(
torch.distributions.Categorical(logits=logits_orig),
torch.distributions.Categorical(logits=logits),
)
- self.hparams.eps
)
# Calculate the L0 loss term
loss_g = expected_L0.mean(-1)
# Calculate the full loss term
loss = self.alpha[layer_pred] * loss_c + loss_g
# Calculate the accuracy
acc, _, _, _ = accuracy_precision_recall_f1(
logits.argmax(-1), logits_orig.argmax(-1), average=True
)
# Calculate the average L0 loss
l0 = expected_L0.exp().mean(-1)
outputs_dict = {
"loss_c": loss_c.mean(-1),
"loss_g": loss_g.mean(-1),
"alpha": self.alpha[layer_pred].mean(-1),
"acc": acc,
"l0": l0.mean(-1),
"layer_pred": layer_pred,
"r_acc": self.running_acc[layer_pred],
"r_l0": self.running_l0[layer_pred],
"r_steps": self.running_steps[layer_pred],
"debug_loss": loss.mean(-1),
}
outputs_dict = {
"loss": loss.mean(-1),
**outputs_dict,
"log": outputs_dict,
"progress_bar": outputs_dict,
}
self.log(
"loss", outputs_dict["loss"], on_step=True, on_epoch=True, prog_bar=True
)
self.log(
"loss_c", outputs_dict["loss_c"], on_step=True, on_epoch=True, prog_bar=True
)
self.log(
"loss_g", outputs_dict["loss_g"], on_step=True, on_epoch=True, prog_bar=True
)
self.log("acc", outputs_dict["acc"], on_step=True, on_epoch=True, prog_bar=True)
self.log("l0", outputs_dict["l0"], on_step=True, on_epoch=True, prog_bar=True)
self.log(
"alpha", outputs_dict["alpha"], on_step=True, on_epoch=True, prog_bar=True
)
outputs_dict = {
"{}{}".format("" if self.training else "val_", k): v
for k, v in outputs_dict.items()
}
if self.training:
self.running_acc[layer_pred] = (
self.running_acc[layer_pred] * 0.9 + acc * 0.1
)
self.running_l0[layer_pred] = (
self.running_l0[layer_pred] * 0.9 + l0.mean(-1) * 0.1
)
self.running_steps[layer_pred] += 1
return outputs_dict
def validation_epoch_end(self, outputs: list[dict]):
outputs_dict = {
k: [e[k] for e in outputs if k in e]
for k in ("val_loss_c", "val_loss_g", "val_acc", "val_l0")
}
outputs_dict = {k: sum(v) / len(v) for k, v in outputs_dict.items()}
outputs_dict["val_loss_c"] += self.hparams.eps
outputs_dict = {
"val_loss": outputs_dict["val_l0"]
if outputs_dict["val_loss_c"] <= self.hparams.eps_valid
and outputs_dict["val_acc"] >= self.hparams.acc_valid
else torch.full_like(outputs_dict["val_l0"], float("inf")),
**outputs_dict,
"log": outputs_dict,
}
return outputs_dict
def configure_optimizers(self) -> tuple[list[Optimizer], list[_LRScheduler]]:
optimizers = [
LookaheadAdam(
params=[
{
"params": self.gate.g_hat.parameters(),
"lr": self.hparams.lr,
},
{
"params": self.gate.placeholder.parameters()
if isinstance(self.gate.placeholder, torch.nn.ParameterList)
else [self.gate.placeholder],
"lr": self.hparams.lr_placeholder,
},
],
# centered=True, # this is for LookaheadRMSprop
),
LookaheadAdam(
params=[self.alpha]
if isinstance(self.alpha, torch.Tensor)
else self.alpha.parameters(),
lr=self.hparams.lr_alpha,
),
]
schedulers = [
{
"scheduler": get_constant_schedule_with_warmup(optimizers[0], 12 * 100),
"interval": "step",
},
get_constant_schedule(optimizers[1]),
]
return optimizers, schedulers
def optimizer_step(
self,
epoch: int,
batch_idx: int,
optimizer: Union[Optimizer, LightningOptimizer],
optimizer_idx: int = 0,
optimizer_closure: Optional[callable] = None,
on_tpu: bool = False,
using_native_amp: bool = False,
using_lbfgs: bool = False,
):
# Optimizer 0: Minimize loss w.r.t. DiffMask's parameters
if optimizer_idx == 0:
# Gradient ascent on the model's parameters
optimizer.step(closure=optimizer_closure)
optimizer.zero_grad()
for g in optimizer.param_groups:
for p in g["params"]:
p.grad = None
# Optimizer 1: Maximize loss w.r.t. the Langrangian
elif optimizer_idx == 1:
# Reverse the sign of the Langrangian's gradients
for i in range(len(self.alpha)):
if self.alpha[i].grad:
self.alpha[i].grad *= -1
# Gradient ascent on the Langrangian
optimizer.step(closure=optimizer_closure)
optimizer.zero_grad()
for g in optimizer.param_groups:
for p in g["params"]:
p.grad = None
# Clip the Lagrangian's values
for i in range(len(self.alpha)):
self.alpha[i].data = torch.where(
self.alpha[i].data < 0,
torch.full_like(self.alpha[i].data, 0),
self.alpha[i].data,
)
self.alpha[i].data = torch.where(
self.alpha[i].data > 200,
torch.full_like(self.alpha[i].data, 200),
self.alpha[i].data,
)
def on_save_checkpoint(self, ckpt: dict):
# Remove VIT from checkpoint as we can load it dynamically
keys = list(ckpt["state_dict"].keys())
for key in keys:
if key.startswith("model."):
del ckpt["state_dict"][key]
|