File size: 5,923 Bytes
d4ab5ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
from argparse import ArgumentParser, Namespace
from attributions import attention_rollout, grad_cam
from datamodules import CIFAR10QADataModule, ImageDataModule
from datamodules.utils import datamodule_factory
from functools import partial
from models import ImageInterpretationNet
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import WandbLogger
from transformers import ViTForImageClassification
from utils.plot import DrawMaskCallback, log_masks

import pytorch_lightning as pl


def get_experiment_name(args: Namespace):
    """Create a name for the experiment based on the command line arguments."""
    # Convert to dictionary
    args = vars(args)

    # Create a list with non-experiment arguments
    non_experiment_args = [
        "add_blur",
        "add_noise",
        "add_rotation",
        "base_model",
        "batch_size",
        "class_idx",
        "data_dir",
        "enable_progress_bar",
        "from_pretrained",
        "log_every_n_steps",
        "num_epochs",
        "num_workers",
        "sample_images",
        "seed",
    ]

    # Create experiment name from experiment arguments
    return "-".join(
        [
            f"{name}={value}"
            for name, value in sorted(args.items())
            if name not in non_experiment_args
        ]
    )


def setup_sample_image_logs(
    dm: ImageDataModule,
    args: Namespace,
    logger: WandbLogger,
    n_panels: int = 2,  # TODO: change?
):
    """Setup the log callbacks for sampling and plotting images."""
    images_per_panel = args.sample_images

    # Sample images
    sample_images = []
    iter_loader = iter(dm.val_dataloader())
    for panel in range(n_panels):
        X, Y = next(iter_loader)
        sample_images += [(X[:images_per_panel], Y[:images_per_panel])]

    # Define mask callback
    mask_cb = partial(DrawMaskCallback, log_every_n_steps=args.log_every_n_steps)

    callbacks = []
    for panel in range(n_panels):
        # Initialize ViT model
        vit = ViTForImageClassification.from_pretrained(args.from_pretrained)

        # Extract samples for current panel
        samples = sample_images[panel]
        X, _ = samples

        # Log GradCAM
        gradcam_masks = grad_cam(X, vit)
        log_masks(X, gradcam_masks, f"GradCAM {panel}", logger)

        # Log Attention Rollout
        rollout_masks = attention_rollout(X, vit)
        log_masks(X, rollout_masks, f"Attention Rollout {panel}", logger)

        # Create mask callback
        callbacks += [mask_cb(samples, key=f"{panel}")]

    return callbacks


def main(args: Namespace):
    # Seed
    pl.seed_everything(args.seed)

    # Load pre-trained Transformer
    model = ViTForImageClassification.from_pretrained(args.from_pretrained)

    # Load datamodule
    dm = datamodule_factory(args)

    # Setup datamodule to sample images for the mask callback
    dm.prepare_data()
    dm.setup("fit")

    # Create Vision DiffMask for the model
    diffmask = ImageInterpretationNet(
        model_cfg=model.config,
        alpha=args.alpha,
        lr=args.lr,
        eps=args.eps,
        lr_placeholder=args.lr_placeholder,
        lr_alpha=args.lr_alpha,
        mul_activation=args.mul_activation,
        add_activation=args.add_activation,
        placeholder=not args.no_placeholder,
        weighted_layer_pred=args.weighted_layer_distribution,
    )
    diffmask.set_vision_transformer(model)

    # Create wandb logger instance
    wandb_logger = WandbLogger(
        name=get_experiment_name(args),
        project="Patch-DiffMask",
    )

    # Create checkpoint callback
    ckpt_cb = ModelCheckpoint(
        save_top_k=-1,
        dirpath=f"checkpoints/{wandb_logger.version}",
        every_n_train_steps=args.log_every_n_steps,
    )

    # Create mask callbacks
    mask_cbs = setup_sample_image_logs(dm, args, wandb_logger)

    # Create trainer
    trainer = pl.Trainer(
        accelerator="auto",
        callbacks=[ckpt_cb, *mask_cbs],
        enable_progress_bar=args.enable_progress_bar,
        logger=wandb_logger,
        max_epochs=args.num_epochs,
    )

    # Train the model
    trainer.fit(diffmask, dm)


if __name__ == "__main__":
    parser = ArgumentParser()

    # Trainer
    parser.add_argument(
        "--enable_progress_bar",
        action="store_true",
        help="Whether to enable the progress bar (NOT recommended when logging to file).",
    )
    parser.add_argument(
        "--num_epochs",
        type=int,
        default=5,
        help="Number of epochs to train.",
    )
    parser.add_argument(
        "--seed",
        type=int,
        default=123,
        help="Random seed for reproducibility.",
    )

    # Logging
    parser.add_argument(
        "--sample_images",
        type=int,
        default=8,
        help="Number of images to sample for the mask callback.",
    )
    parser.add_argument(
        "--log_every_n_steps",
        type=int,
        default=200,
        help="Number of steps between logging media & checkpoints.",
    )

    # Base (classification) model
    parser.add_argument(
        "--base_model",
        type=str,
        default="ViT",
        choices=["ViT"],
        help="Base model architecture to train.",
    )
    parser.add_argument(
        "--from_pretrained",
        type=str,
        default="tanlq/vit-base-patch16-224-in21k-finetuned-cifar10",
        help="The name of the pretrained HF model to load.",
    )

    # Interpretation model
    ImageInterpretationNet.add_model_specific_args(parser)

    # Datamodule
    ImageDataModule.add_model_specific_args(parser)
    CIFAR10QADataModule.add_model_specific_args(parser)
    parser.add_argument(
        "--dataset",
        type=str,
        default="CIFAR10",
        choices=["MNIST", "CIFAR10", "CIFAR10_QA", "toy"],
        help="The dataset to use.",
    )

    args = parser.parse_args()

    main(args)