Spaces:
Runtime error
Runtime error
import sys | |
sys.path.insert(0, './code') | |
from datamodules.transformations import UnNest | |
from models.interpretation import ImageInterpretationNet | |
from transformers import ViTFeatureExtractor, ViTForImageClassification | |
from utils.plot import smoothen, draw_mask_on_image, draw_heatmap_on_image | |
import gradio as gr | |
import numpy as np | |
import torch | |
# Load Vision Transformer | |
hf_model = "tanlq/vit-base-patch16-224-in21k-finetuned-cifar10" | |
hf_model_imagenet = "google/vit-base-patch16-224" | |
vit = ViTForImageClassification.from_pretrained(hf_model) | |
vit_imagenet = ViTForImageClassification.from_pretrained(hf_model_imagenet) | |
vit.eval() | |
vit_imagenet.eval() | |
# Load Feature Extractor | |
feature_extractor = ViTFeatureExtractor.from_pretrained(hf_model, return_tensors="pt") | |
feature_extractor_imagenet = ViTFeatureExtractor.from_pretrained(hf_model_imagenet, return_tensors="pt") | |
feature_extractor = UnNest(feature_extractor) | |
feature_extractor_imagenet = UnNest(feature_extractor_imagenet) | |
# Load Vision DiffMask | |
diffmask = ImageInterpretationNet.load_from_checkpoint('checkpoints/diffmask.ckpt') | |
diffmask.set_vision_transformer(vit) | |
diffmask_imagenet = ImageInterpretationNet.load_from_checkpoint('checkpoints/diffmask_imagenet.ckpt') | |
diffmask_imagenet.set_vision_transformer(vit_imagenet) | |
diffmask.eval() | |
diffmask_imagenet.eval() | |
# Define mask plotting functions | |
def draw_mask(image, mask): | |
return draw_mask_on_image(image, smoothen(mask))\ | |
.permute(1, 2, 0)\ | |
.clip(0, 1)\ | |
.numpy() | |
def draw_heatmap(image, mask): | |
return draw_heatmap_on_image(image, smoothen(mask))\ | |
.permute(1, 2, 0)\ | |
.clip(0, 1)\ | |
.numpy() | |
# Define callable method for the demo | |
def get_mask(image, model_name: str): | |
torch.manual_seed(seed=0) | |
if image is None: | |
return None, None, None | |
if model_name == 'DiffMask-CIFAR-10': | |
diffmask_model = diffmask | |
elif model_name == 'DiffMask-ImageNet': | |
diffmask_model = diffmask_imagenet | |
# Helper function to convert class index to name | |
def idx2cname(idx): | |
return diffmask_model.model.config.id2label[idx] | |
# Prepare image and pass through Vision DiffMask | |
image = torch.from_numpy(image).permute(2, 0, 1).float() / 255 | |
dm_image = feature_extractor(image).unsqueeze(0) | |
dm_out = diffmask_model.get_mask(dm_image) | |
# Get mask and apply on image | |
mask = dm_out["mask"][0].detach() | |
masked_img = draw_mask(image, mask) | |
heatmap = draw_heatmap(image, mask) | |
# Get logits and map to predictions with class names | |
n_classes = len(diffmask_model.model.config.id2label) | |
logits_orig = dm_out["logits_orig"][0].detach().softmax(dim=-1) | |
logits_mask = dm_out["logits"][0].detach().softmax(dim=-1) | |
orig_probs = {idx2cname(i): logits_orig[i].item() for i in range(n_classes)} | |
mask_probs = {idx2cname(i): logits_mask[i].item() for i in range(n_classes)} | |
return np.hstack((masked_img, heatmap)), orig_probs, mask_probs | |
# Launch demo interface | |
gr.Interface( | |
get_mask, | |
inputs=[ | |
gr.inputs.Image(label="Input", shape=(224, 224), source="upload", type="numpy"), | |
gr.inputs.Dropdown(label="Model Name", choices=["DiffMask-ImageNet", "DiffMask-CIFAR-10"]), | |
], | |
outputs=[ | |
gr.outputs.Image(label="Output"), | |
gr.outputs.Label(label="Original Prediction", num_top_classes=5), | |
gr.outputs.Label(label="Masked Prediction", num_top_classes=5), | |
], | |
examples=[["dogcat.jpeg", "DiffMask-ImageNet"], ["elephant-zebra.jpg", "DiffMask-ImageNet"], | |
["finch.jpeg", "DiffMask-ImageNet"]], | |
title="Vision DiffMask Demo", | |
live=True, | |
).launch() | |