File size: 18,325 Bytes
e03dd66
 
 
 
 
 
 
216a545
e03dd66
 
 
 
 
 
 
 
 
 
 
 
ca53984
4f1f2ca
e03dd66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bec530
e03dd66
 
 
 
 
 
 
4bec530
e03dd66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27dddc3
 
 
e03dd66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bec530
e03dd66
 
 
 
 
 
 
4bec530
e03dd66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27dddc3
e03dd66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31c3a30
149d53a
31c3a30
 
 
 
 
 
 
e03dd66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ef5dee
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
import joblib
import gradio as gr
from collections import Counter
from typing import TypedDict
from abc import ABC, abstractmethod
from typing import Any, Dict, Type
from scipy.sparse._csc import csc_matrix
from typing import Iterable, Callable, List, Dict, Optional, Type, TypeVar 
import pickle
from dataclasses import dataclass
import tqdm
import re
import os
import nltk
nltk.download("stopwords", quiet=True)
from nltk.corpus import stopwords as nltk_stopwords
import math 
from dataclasses import dataclass
from typing import Optional
from datasets import load_dataset
from enum import Enum
import numpy as np 

@dataclass
class Document:
    collection_id: str
    text: str


@dataclass
class Query:
    query_id: str
    text: str


@dataclass
class QRel:
    query_id: str
    collection_id: str
    relevance: int
    answer: Optional[str] = None

class Split(str, Enum):
    train = "train"
    dev = "dev"
    test = "test"

@dataclass
class IRDataset:
    corpus: List[Document]
    queries: List[Query]
    split2qrels: Dict[Split, List[QRel]]

    def get_stats(self) -> Dict[str, int]:
        stats = {"|corpus|": len(self.corpus), "|queries|": len(self.queries)}
        for split, qrels in self.split2qrels.items():
            stats[f"|qrels-{split}|"] = len(qrels)
        return stats

    def get_qrels_dict(self, split: Split) -> Dict[str, Dict[str, int]]:
        qrels_dict = {}
        for qrel in self.split2qrels[split]:
            qrels_dict.setdefault(qrel.query_id, {})
            qrels_dict[qrel.query_id][qrel.collection_id] = qrel.relevance
        return qrels_dict

    def get_split_queries(self, split: Split) -> List[Query]:
        qrels = self.split2qrels[split]
        qids = {qrel.query_id for qrel in qrels}
        return list(filter(lambda query: query.query_id in qids, self.queries))



@(joblib.Memory(".cache").cache)
def load_sciq(verbose: bool = False) -> IRDataset:
    train = load_dataset("allenai/sciq", split="train")
    validation = load_dataset("allenai/sciq", split="validation")
    test = load_dataset("allenai/sciq", split="test")
    data = {Split.train: train, Split.dev: validation, Split.test: test}

    # Each duplicated record is the same to each other:
    df = train.to_pandas() + validation.to_pandas() + test.to_pandas()
    for question, group in df.groupby("question"):
        assert len(set(group["support"].tolist())) == len(group)
        assert len(set(group["correct_answer"].tolist())) == len(group)

    # Build:
    corpus = []
    queries = []
    split2qrels: Dict[str, List[dict]] = {}
    question2id = {}
    support2id = {}
    for split, rows in data.items():
        if verbose:
            print(f"|raw_{split}|", len(rows))
        split2qrels[split] = []
        for i, row in enumerate(rows):
            example_id = f"{split}-{i}"
            support: str = row["support"]
            if len(support.strip()) == 0:
                continue
            question = row["question"]
            if len(support.strip()) == 0:
                continue
            if support in support2id:
                continue
            else:
                support2id[support] = example_id
            if question in question2id:
                continue
            else:
                question2id[question] = example_id
            doc = {"collection_id": example_id, "text": support}
            query = {"query_id": example_id, "text": row["question"]}
            qrel = {
                "query_id": example_id,
                "collection_id": example_id,
                "relevance": 1,
                "answer": row["correct_answer"],
            }
            corpus.append(Document(**doc))
            queries.append(Query(**query))
            split2qrels[split].append(QRel(**qrel))

    # Assembly and return:
    return IRDataset(corpus=corpus, queries=queries, split2qrels=split2qrels)

LANGUAGE = "english"
word_splitter = re.compile(r"(?u)\b\w\w+\b").findall
stopwords = set(nltk_stopwords.words(LANGUAGE))

def word_splitting(text: str) -> List[str]:
    return word_splitter(text.lower())

def lemmatization(words: List[str]) -> List[str]:
    return words  # We ignore lemmatization here for simplicity

def simple_tokenize(text: str) -> List[str]:
    words = word_splitting(text)
    tokenized = list(filter(lambda w: w not in stopwords, words))
    tokenized = lemmatization(tokenized)
    return tokenized

T = TypeVar("T", bound="InvertedIndex")

@dataclass
class PostingList:
    term: str  # The term
    docid_postings: List[int]  # docid_postings[i] means the docid (int) of the i-th associated posting
    tweight_postings: List[float]  # tweight_postings[i] means the term weight (float) of the i-th associated posting

@dataclass
class InvertedIndex:
    posting_lists: List[PostingList]  # docid -> posting_list
    vocab: Dict[str, int]
    cid2docid: Dict[str, int]  # collection_id -> docid
    collection_ids: List[str]  # docid -> collection_id
    doc_texts: Optional[List[str]] = None  # docid -> document text

    def save(self, output_dir: str) -> None:
        os.makedirs(output_dir, exist_ok=True)
        with open(os.path.join(output_dir, "index.pkl"), "wb") as f:
            pickle.dump(self, f)

    @classmethod
    def from_saved(cls: Type[T], saved_dir: str) -> T:
        index = cls(
            posting_lists=[], vocab={}, cid2docid={}, collection_ids=[], doc_texts=None
        )
        with open(os.path.join(saved_dir, "index.pkl"), "rb") as f:
            index = pickle.load(f)
        return index

class BaseRetriever(ABC):

    @property
    @abstractmethod
    def index_class(self) -> Type[Any]:
        pass

    def get_term_weights(self, query: str, cid: str) -> Dict[str, float]:
        raise NotImplementedError

    @abstractmethod
    def score(self, query: str, cid: str) -> float:
        pass

    @abstractmethod
    def retrieve(self, query: str, topk: int = 10) -> Dict[str, float]:
        pass

@dataclass
class Counting:
    posting_lists: List[PostingList]
    vocab: Dict[str, int]
    cid2docid: Dict[str, int]
    collection_ids: List[str]
    dfs: List[int]  # tid -> df
    dls: List[int]  # docid -> doc length
    avgdl: float
    nterms: int
    doc_texts: Optional[List[str]] = None

def run_counting(
    documents: Iterable[Document],
    tokenize_fn: Callable[[str], List[str]] = simple_tokenize,
    store_raw: bool = True,  # store the document text in doc_texts
    ndocs: Optional[int] = None,
    show_progress_bar: bool = True,
) -> Counting:
    """Counting TFs, DFs, doc_lengths, etc."""
    posting_lists: List[PostingList] = []
    vocab: Dict[str, int] = {}
    cid2docid: Dict[str, int] = {}
    collection_ids: List[str] = []
    dfs: List[int] = []  # tid -> df
    dls: List[int] = []  # docid -> doc length
    nterms: int = 0
    doc_texts: Optional[List[str]] = []
    for doc in tqdm.tqdm(
        documents,
        desc="Counting",
        total=ndocs,
        disable=not show_progress_bar,
    ):
        if doc.collection_id in cid2docid:
            continue
        collection_ids.append(doc.collection_id)
        docid = cid2docid.setdefault(doc.collection_id, len(cid2docid))
        toks = tokenize_fn(doc.text)
        tok2tf = Counter(toks)
        dls.append(sum(tok2tf.values()))
        for tok, tf in tok2tf.items():
            nterms += tf
            tid = vocab.get(tok, None)
            if tid is None:
                posting_lists.append(
                    PostingList(term=tok, docid_postings=[], tweight_postings=[])
                )
                tid = vocab.setdefault(tok, len(vocab))
            posting_lists[tid].docid_postings.append(docid)
            posting_lists[tid].tweight_postings.append(tf)
            if tid < len(dfs):
                dfs[tid] += 1
            else:
                dfs.append(0)
        if store_raw:
            doc_texts.append(doc.text)
        else:
            doc_texts = None
    return Counting(
        posting_lists=posting_lists,
        vocab=vocab,
        cid2docid=cid2docid,
        collection_ids=collection_ids,
        dfs=dfs,
        dls=dls,
        avgdl=sum(dls) / len(dls),
        nterms=nterms,
        doc_texts=doc_texts,
    )

@dataclass
class BM25Index(InvertedIndex):

    @staticmethod
    def tokenize(text: str) -> List[str]:
        return simple_tokenize(text)

    @staticmethod
    def cache_term_weights(
        posting_lists: List[PostingList],
        total_docs: int,
        avgdl: float,
        dfs: List[int],
        dls: List[int],
        k1: float,
        b: float,
    ) -> None:
        """Compute term weights and caching"""

        N = total_docs
        for tid, posting_list in enumerate(
            tqdm.tqdm(posting_lists, desc="Regularizing TFs")
        ):
            idf = BM25Index.calc_idf(df=dfs[tid], N=N)
            for i in range(len(posting_list.docid_postings)):
                docid = posting_list.docid_postings[i]
                tf = posting_list.tweight_postings[i]
                dl = dls[docid]
                regularized_tf = BM25Index.calc_regularized_tf(
                    tf=tf, dl=dl, avgdl=avgdl, k1=k1, b=b
                )
                posting_list.tweight_postings[i] = regularized_tf * idf

    @staticmethod
    def calc_regularized_tf(
        tf: int, dl: float, avgdl: float, k1: float, b: float
    ) -> float:
        return tf / (tf + k1 * (1 - b + b * dl / avgdl))

    @staticmethod
    def calc_idf(df: int, N: int):
        return math.log(1 + (N - df + 0.5) / (df + 0.5))

    @classmethod
    def build_from_documents(
        cls: Type["BM25Index"],
        documents: Iterable[Document],
        store_raw: bool = True,
        output_dir: Optional[str] = None,
        ndocs: Optional[int] = None,
        show_progress_bar: bool = True,
        k1: float = 0.9,
        b: float = 0.4,
    ) -> "BM25Index":
        # Counting TFs, DFs, doc_lengths, etc.:
        counting = run_counting(
            documents=documents,
            tokenize_fn=BM25Index.tokenize,
            store_raw=store_raw,
            ndocs=ndocs,
            show_progress_bar=show_progress_bar,
        )

        # Compute term weights and caching:
        posting_lists = counting.posting_lists
        total_docs = len(counting.cid2docid)
        BM25Index.cache_term_weights(
            posting_lists=posting_lists,
            total_docs=total_docs,
            avgdl=counting.avgdl,
            dfs=counting.dfs,
            dls=counting.dls,
            k1=k1,
            b=b,
        )

        # Assembly and save:
        index = BM25Index(
            posting_lists=posting_lists,
            vocab=counting.vocab,
            cid2docid=counting.cid2docid,
            collection_ids=counting.collection_ids,
            doc_texts=counting.doc_texts,
        )
        return index


@dataclass
class CSCInvertedIndex:
    posting_lists_matrix: csc_matrix  # docid -> posting_list
    vocab: Dict[str, int]
    cid2docid: Dict[str, int]  # collection_id -> docid
    collection_ids: List[str]  # docid -> collection_id
    doc_texts: Optional[List[str]] = None  # docid -> document text

    def save(self, output_dir: str) -> None:
        os.makedirs(output_dir, exist_ok=True)
        with open(os.path.join(output_dir, "index.pkl"), "wb") as f:
            pickle.dump(self, f)

    @classmethod
    def from_saved(cls: Type[T], saved_dir: str) -> T:
        index = cls(
            posting_lists_matrix=None, vocab={}, cid2docid={}, collection_ids=[], doc_texts=None
        )
        with open(os.path.join(saved_dir, "index.pkl"), "rb") as f:
            index = pickle.load(f)
        return index

@dataclass
class CSCBM25Index(CSCInvertedIndex):

    @staticmethod
    def tokenize(text: str) -> List[str]:
        return simple_tokenize(text)

    @staticmethod
    def cache_term_weights(
        posting_lists: List[PostingList],
        total_docs: int,
        avgdl: float,
        dfs: List[int],
        dls: List[int],
        k1: float,
        b: float,
    ) -> csc_matrix:
        """Compute term weights and caching"""

        ## YOUR_CODE_STARTS_HERE
        data = []
        indices = []
        indptr = [0]
        N = total_docs
        for tid, posting_list in enumerate(
            tqdm.tqdm(posting_lists, desc="Regularizing TFs")
        ):
            idf = BM25Index.calc_idf(df=dfs[tid], N=N)
            for i in range(len(posting_list.docid_postings)):
                docid = posting_list.docid_postings[i]
                tf = posting_list.tweight_postings[i]
                dl = dls[docid]
                regularized_tf = BM25Index.calc_regularized_tf(
                    tf=tf, dl=dl, avgdl=avgdl, k1=k1, b=b
                )
                weight = regularized_tf * idf
                data.append(weight)
                indices.append(docid) 
            indptr.append(len(data)) 

        data = np.array(data, dtype=np.float32)
        indices = np.array(indices, dtype=np.int32)
        indptr = np.array(indptr, dtype=np.int32)
        posting_lists_matrix = csc_matrix(
            (data, indices, indptr),
            shape=(total_docs, len(posting_lists))
        )

        return posting_lists_matrix
        ## YOUR_CODE_ENDS_HERE

    @staticmethod
    def calc_regularized_tf(
        tf: int, dl: float, avgdl: float, k1: float, b: float
    ) -> float:
        return tf / (tf + k1 * (1 - b + b * dl / avgdl))

    @staticmethod
    def calc_idf(df: int, N: int):
        return math.log(1 + (N - df + 0.5) / (df + 0.5))

    @classmethod
    def build_from_documents(
        cls: Type["CSCBM25Index"],
        documents: Iterable[Document],
        store_raw: bool = True,
        output_dir: Optional[str] = None,
        ndocs: Optional[int] = None,
        show_progress_bar: bool = True,
        k1: float = 0.9,
        b: float = 0.4,
    ) -> "CSCBM25Index":
        # Counting TFs, DFs, doc_lengths, etc.:
        counting = run_counting(
            documents=documents,
            tokenize_fn=CSCBM25Index.tokenize,
            store_raw=store_raw,
            ndocs=ndocs,
            show_progress_bar=show_progress_bar,
        )

        # Compute term weights and caching:
        posting_lists = counting.posting_lists
        total_docs = len(counting.cid2docid)
        posting_lists_matrix = CSCBM25Index.cache_term_weights(
            posting_lists=posting_lists,
            total_docs=total_docs,
            avgdl=counting.avgdl,
            dfs=counting.dfs,
            dls=counting.dls,
            k1=k1,
            b=b,
        )

        # Assembly and save:
        index = CSCBM25Index(
            posting_lists_matrix=posting_lists_matrix,
            vocab=counting.vocab,
            cid2docid=counting.cid2docid,
            collection_ids=counting.collection_ids,
            doc_texts=counting.doc_texts,
        )
        return index

class BaseCSCInvertedIndexRetriever(BaseRetriever):

    @property
    @abstractmethod
    def index_class(self) -> Type[CSCInvertedIndex]:
        pass

    def __init__(self, index_dir: str) -> None:
        self.index = self.index_class.from_saved(index_dir)

    def get_term_weights(self, query: str, cid: str) -> Dict[str, float]:
        ## YOUR_CODE_STARTS_HERE
        toks = self.index.tokenize(query)
        target_docid = self.index.cid2docid[cid]
        term_weights = {}

        for tok in toks:
            if tok not in self.index.vocab:
                continue
            tid = self.index.vocab[tok]
            weight = self.index.posting_lists_matrix[target_docid, tid]
            if weight == 0: continue 
            term_weights[tok] = weight 
        return term_weights
        ## YOUR_CODE_ENDS_HERE

    def score(self, query: str, cid: str) -> float:
        return sum(self.get_term_weights(query=query, cid=cid).values())

    def retrieve(self, query: str, topk: int = 10) -> Dict[str, float]:
        ## YOUR_CODE_STARTS_HERE
        toks = self.index.tokenize(query)
        docid2score: Dict[int, float] = {}
        for tok in toks:
            if tok not in self.index.vocab:
                continue
            tid = self.index.vocab[tok]
            col = self.index.posting_lists_matrix[:, tid]
            rows, data = col.indices, col.data

            for docid, tweight in zip(rows, data):
              docid2score.setdefault(docid, 0)
              docid2score[docid] += tweight

        docid2score = dict(
            sorted(docid2score.items(), key=lambda pair: pair[1], reverse=True)[:topk]
        )
        return {
            self.index.collection_ids[docid]: score
            for docid, score in docid2score.items()
        }
        ## YOUR_CODE_ENDS_HERE

class CSCBM25Retriever(BaseCSCInvertedIndexRetriever):

    @property
    def index_class(self) -> Type[CSCBM25Index]:
        return CSCBM25Index

class Hit(TypedDict):
  cid: str
  score: float
  text: str

demo: Optional[gr.Interface] = None  # Assign your gradio demo to this variable
return_type = List[Hit]

## YOUR_CODE_STARTS_HERE
# Use default b, k1
sciq = load_sciq()
csc_bm25_index = CSCBM25Index.build_from_documents(
    documents=iter(sciq.corpus),
    ndocs=12160,
    show_progress_bar=True
  )
csc_bm25_index.save("output/csc_bm25_index_default")
csc_bm25_retriever = CSCBM25Retriever(index_dir="output/csc_bm25_index_default")
doc2text = {doc.collection_id: doc.text for doc in sciq.corpus}

def retrieve(query: str) -> List[Hit]:
  results = csc_bm25_retriever.retrieve(query)

  hits: List[Hit] = []
  for cid, score in results.items():
      hit: Hit = {
          "cid": cid,
          "score": score,
          "text": doc2text[cid]
      }
      hits.append(hit)
  hits = sorted(hits, key=lambda x: x["score"], reverse=True)
  return hits
    
def format_hits(hits: List[Hit]):
  output = ""
  for i, hit in enumerate(hits, 1):
      output += f"\n\n{i}. Score: {hit['score']:.3f}\n"
      output += f"ID: {hit['cid']}\n"
      output += f"Text: {hit['text']}\n"
      output += "-" * 80
  return output 

demo = gr.Interface(
    fn=retrieve,
    inputs=gr.Textbox(label="Query"),
    outputs=gr.JSON(label="Results"),
    title="Document Search",
    description="Search documents using BM25 retrieval"
)
## YOUR_CODE_ENDS_HERE
demo.launch()