glm4 / openai_api_request.py
jackbond2024's picture
Upload folder using huggingface_hub
03f3fb4 verified
"""
This script creates a OpenAI Request demo for the glm-4-9b model, just Use OpenAI API to interact with the model.
"""
from openai import OpenAI
base_url = "http://127.0.0.1:8000/v1/"
client = OpenAI(api_key="EMPTY", base_url=base_url)
def function_chat(use_stream=False):
messages = [
{
"role": "user", "content": "What's the Celsius temperature in San Francisco?"
},
# Give Observations
# {
# "role": "assistant",
# "content": None,
# "function_call": None,
# "tool_calls": [
# {
# "id": "call_1717912616815",
# "function": {
# "name": "get_current_weather",
# "arguments": "{\"location\": \"San Francisco, CA\", \"format\": \"celsius\"}"
# },
# "type": "function"
# }
# ]
# },
# {
# "tool_call_id": "call_1717912616815",
# "role": "tool",
# "name": "get_current_weather",
# "content": "23°C",
# }
]
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"format": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
"description": "The temperature unit to use. Infer this from the users location.",
},
},
"required": ["location", "format"],
},
}
},
]
# All Tools: CogView
# messages = [{"role": "user", "content": "帮我画一张天空的画画吧"}]
# tools = [{"type": "cogview"}]
# All Tools: Searching
# messages = [{"role": "user", "content": "今天黄金的价格"}]
# tools = [{"type": "simple_browser"}]
response = client.chat.completions.create(
model="glm-4",
messages=messages,
tools=tools,
stream=use_stream,
max_tokens=256,
temperature=0.9,
presence_penalty=1.2,
top_p=0.1,
tool_choice="auto"
)
if response:
if use_stream:
for chunk in response:
print(chunk)
else:
print(response)
else:
print("Error:", response.status_code)
def simple_chat(use_stream=False):
messages = [
{
"role": "system",
"content": "请在你输出的时候都带上“喵喵喵”三个字,放在开头。",
},
{
"role": "user",
"content": "你是谁"
}
]
response = client.chat.completions.create(
model="glm-4",
messages=messages,
stream=use_stream,
max_tokens=256,
temperature=0.4,
presence_penalty=1.2,
top_p=0.8,
)
if response:
if use_stream:
for chunk in response:
print(chunk)
else:
print(response)
else:
print("Error:", response.status_code)
if __name__ == "__main__":
# simple_chat(use_stream=False)
function_chat(use_stream=False)