jackboyla commited on
Commit
598825a
·
1 Parent(s): 43d7abb

Updates demo installation

Browse files
Files changed (1) hide show
  1. app.py +10 -11
app.py CHANGED
@@ -1,17 +1,16 @@
1
  import subprocess
2
 
3
- subprocess.run(["pip", "install", "gradio==4.31.5"])
4
- subprocess.run(["pip", "install", "spacy"])
5
- subprocess.run(["pip", "install", "glirel"])
6
- subprocess.run(["pip", "install", "scipy==1.10.1"])
7
- subprocess.run(["pip", "install", "numpy==1.26.4"])
8
-
9
- subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
10
- subprocess.run(["python", "-m", "spacy", "download", "en_core_web_md"])
11
- subprocess.run(["python", "-m", "spacy", "download", "en_core_web_lg"])
12
 
 
13
 
 
 
14
 
 
15
 
16
  from typing import Dict, Union
17
  import gradio as gr
@@ -39,7 +38,7 @@ examples = [
39
 
40
 
41
  # Load the relation extraction model
42
- rel_model = GLiREL.from_pretrained("jackboyla/glirel_beta")
43
 
44
  # Function to perform Named Entity Recognition
45
  def perform_ner(text, model_name):
@@ -92,7 +91,7 @@ with gr.Blocks() as demo:
92
  gr.Markdown("GitHub: https://github.com/jackboyla/GLiREL")
93
 
94
  text_input = gr.Textbox(label="Input Text", value="Jack lives in London but he was born in Mongolia.")
95
- model_name_input = gr.Dropdown(choices=["en_core_web_sm", "en_core_web_md", "en_core_web_lg"], label="NER Model", value="en_core_web_sm")
96
  labels_input = gr.Textbox(label="Relation Labels (comma-separated)", value="country of origin, licensed to broadcast to, father, followed by, characters")
97
 
98
  ner_output = gr.HighlightedText(label="NER")
 
1
  import subprocess
2
 
3
+ # install required packages
4
+ subprocess.run(["pip", "install", "-U", "gradio"])
5
+
6
+ repo_url = "https://github.com/jackboyla/GLiREL"
 
 
 
 
 
7
 
8
+ subprocess.run(["git", "clone", repo_url])
9
 
10
+ subprocess.run(["pip", "install", "./GLiREL"])
11
+ subprocess.run(["pip", "install", "-r", "./GLiREL/requirements.txt"])
12
 
13
+ subprocess.run(["python", "-m", "spacy", "download", "en_core_web_lg"])
14
 
15
  from typing import Dict, Union
16
  import gradio as gr
 
38
 
39
 
40
  # Load the relation extraction model
41
+ rel_model = GLiREL.from_pretrained("jackboyla/glirel-large-v0")
42
 
43
  # Function to perform Named Entity Recognition
44
  def perform_ner(text, model_name):
 
91
  gr.Markdown("GitHub: https://github.com/jackboyla/GLiREL")
92
 
93
  text_input = gr.Textbox(label="Input Text", value="Jack lives in London but he was born in Mongolia.")
94
+ model_name_input = gr.Dropdown(choices=["en_core_web_lg"], label="NER Model", value="en_core_web_lg")
95
  labels_input = gr.Textbox(label="Relation Labels (comma-separated)", value="country of origin, licensed to broadcast to, father, followed by, characters")
96
 
97
  ner_output = gr.HighlightedText(label="NER")