PaperExtractGPT / app.py
jackkuo's picture
Update app.py
900c0a5 verified
raw
history blame
5.65 kB
from openai import OpenAI
import gradio as gr
import fitz # PyMuPDF
from PIL import Image
from pathlib import Path
import os
api_key = os.getenv('API_KEY')
base_url = os.getenv("BASE_URL")
client = OpenAI(
api_key=api_key,
base_url=base_url,
)
def extract_pdf_pypdf(pdf_dir):
try:
doc = fitz.open(pdf_dir)
except Exception as e:
print(f"Error opening PDF: {e}")
return None
page_count = doc.page_count
file_content = ""
for page in range(page_count):
try:
text = doc.load_page(page).get_text("text")
file_content += text + "\n\n"
except Exception as e:
print(f"Error reading page {page}: {e}")
continue
return file_content
def openai_api(messages):
try:
completion = client.chat.completions.create(
model="claude-3-5-sonnet-20240620",
messages=messages,
temperature=0.1,
max_tokens=8192,
stream=True
)
response = ''.join(
[chunk.choices[0].delta.content if chunk.choices[0].delta.content else "" for chunk in completion])
return response
except Exception as ex:
print("API error:", ex)
return None
def predict(input_text, pdf_file):
if pdf_file is None:
return "Please upload a PDF file to proceed."
file_content = extract_pdf_pypdf(pdf_file.name)
messages = [
{
"role": "system",
"content": "You are an expert in information extraction from scientific literature.",
},
{"role": "user", "content": """Provided Text:
'''
{{""" + file_content + """}}
'''
""" + input_text}
]
extract_result = openai_api(messages)
return extract_result or "Too many users. Please wait a moment!"
def convert_pdf_to_images(pdf_path, image_folder="pdf_images", dpi=300):
# 创建存储图像的文件夹
os.makedirs(image_folder, exist_ok=True)
# 打开PDF文档
pdf_document = fitz.open(pdf_path)
image_paths = []
# 遍历每一页PDF,并生成高DPI的图像
for page_number in range(len(pdf_document)):
page = pdf_document[page_number]
pix = page.get_pixmap(dpi=dpi)
image_path = Path(image_folder) / f"page_{page_number + 1}.png"
Image.frombytes("RGB", [pix.width, pix.height], pix.samples).save(image_path)
image_paths.append(str(image_path)) # 收集每一页的图像路径
pdf_document.close()
return image_paths
def display_pdf_images(file):
# 转换PDF为高清图像
image_paths = convert_pdf_to_images(file)
return image_paths # 返回图像路径列表以显示
en_1 = """Could you please help me extract the information of 'title'/'journal'/'year'/'author'/'institution'/'email' from the previous content in a markdown table format?
If any of this information was not available in the paper, please replace it with the string `""`. If the property contains multiple entities, please use a list to contain.
"""
en_2 = """Could you please help me extract the information of 'title'/'journal'/'year'/'author'/'institution'/'email' from the previous content in a JSON format?
If any of this information was not available in the paper, please replace it with the string `""`. If the property contains multiple entities, please use a list to contain.
"""
examples = [[en_1], [en_2]]
with gr.Blocks(title="PaperExtractGPT") as demo:
gr.Markdown(
'''<h1 align="center"> Paper Extract GPT </h1>
<p>How to use:
<br><strong>1</strong>: Upload your PDF.
<br><strong>2</strong>: Click "View PDF" to preview it.
<br><strong>3</strong>: Enter your extraction prompt in the input box.
<br><strong>4</strong>: Click "Generate" to extract, and the extracted information will display below.
</p>'''
)
with gr.Row():
with gr.Column():
file_input = gr.File(label="Upload your PDF", type="filepath")
example = gr.Examples(examples=[["./sample.pdf"]], inputs=file_input)
viewer_button = gr.Button("View PDF")
file_out = gr.Gallery(label="PDF Viewer", columns=1, height="auto", object_fit="contain")
with gr.Column():
model_input = gr.Textbox(lines=7, placeholder='Enter your extraction prompt here', label='Input Prompt')
example = gr.Examples(examples=examples, inputs=model_input)
with gr.Row():
gen = gr.Button("Generate")
clr = gr.Button("Clear")
outputs = gr.Markdown(label='Output', value="""| Title | Journal | Year | Author | Institution | Email |
|---------------------------------------------|--------------------|------|-----------------------------------------------|-------------------------------------------------------|-----------------------|
| Paleomagnetic Study of Deccan Traps from Jabalpur to Amarkantak, Central India | J. Geomag. Geoelectr. | 1973 | R. K. VERMA, G. PULLAIAH, G.R. ANJANEYULU, P. K. MALLIK | National Geophysical Research Institute, Hyderabad, and Indian School o f Mines, Dhanbad | "" |
""")
gen.click(fn=predict, inputs=[model_input, file_input], outputs=outputs)
clr.click(fn=lambda: [gr.update(value=""), gr.update(value="")], inputs=None, outputs=[model_input, outputs])
viewer_button.click(display_pdf_images, inputs=file_input, outputs=file_out)
demo.launch()