Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,88 +1,140 @@
|
|
1 |
import gradio as gr
|
2 |
import base64
|
3 |
-
import os
|
|
|
|
|
4 |
api_key = os.getenv('API_KEY')
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
else:
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
|
24 |
def view_pdf(pdf_file):
|
|
|
|
|
|
|
25 |
with open(pdf_file.name, 'rb') as f:
|
26 |
pdf_data = f.read()
|
27 |
-
# print("pdf_file", pdf_file)
|
28 |
-
# pdf_data = pdf_file
|
29 |
b64_data = base64.b64encode(pdf_data).decode('utf-8')
|
30 |
-
# print("b64_data", b64_data)
|
31 |
return f"<embed src='data:application/pdf;base64,{b64_data}' type='application/pdf' width='100%' height='700px' />"
|
32 |
|
33 |
|
34 |
-
en_1 =
|
35 |
-
If any of this information was not available in the paper, please
|
36 |
-
"""
|
37 |
|
38 |
-
en_2 =
|
39 |
-
If any of this information was not available in the paper, please
|
40 |
-
"""
|
41 |
|
42 |
-
examples = [en_1, en_2]
|
43 |
|
44 |
-
with gr.Blocks(title="
|
45 |
gr.Markdown(
|
46 |
-
'''<p align="center"
|
47 |
-
<img src="https://big-cheng.com/img/pdf.png" alt="pdf-logo" width="50"/>
|
48 |
-
<p>
|
49 |
-
|
50 |
<h1 align="center"> Paper Extract GPT </h1>
|
51 |
<p> How to use:
|
52 |
-
<br> <strong
|
53 |
-
<br> <strong
|
54 |
-
<br> <strong
|
55 |
-
<br> <strong
|
56 |
</p>
|
57 |
'''
|
58 |
)
|
59 |
with gr.Row():
|
60 |
with gr.Column():
|
61 |
gr.Markdown('## Upload PDF')
|
62 |
-
file_input = gr.File(type="filepath")
|
63 |
viewer_button = gr.Button("View PDF")
|
64 |
-
file_out = gr.HTML()
|
|
|
65 |
with gr.Column():
|
66 |
-
|
67 |
-
|
68 |
-
label='Input')
|
69 |
with gr.Row():
|
70 |
gen = gr.Button("Generate")
|
71 |
clr = gr.Button("Clear")
|
72 |
-
|
73 |
-
|
74 |
-
with gr.Row():
|
75 |
-
outputs = gr.Markdown(label='Output', show_label=True, value="""| Title | Journal | Year | Author | Institution | Email |
|
76 |
|---------------------------------------------|--------------------|------|-----------------------------------------------|-------------------------------------------------------|-----------------------|
|
77 |
| Paleomagnetic Study of Deccan Traps from Jabalpur to Amarkantak, Central India | J. Geomag. Geoelectr. | 1973 | R. K. VERMA, G. PULLAIAH, G.R. ANJANEYULU, P. K. MALLIK | National Geophysical Research Institute, Hyderabad, and Indian School o f Mines, Dhanbad | "" |
|
78 |
""")
|
79 |
|
80 |
-
inputs
|
81 |
-
|
82 |
-
clr.click(fn=lambda value: [gr.update(value=""), gr.update(value="")], inputs=clr,
|
83 |
-
outputs=[model_input, outputs])
|
84 |
-
|
85 |
viewer_button.click(view_pdf, inputs=file_input, outputs=file_out)
|
86 |
-
# parser_button.click(extract_text, inputs=file_input, outputs=[xml_out, md_out, rich_md_out])
|
87 |
|
88 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import base64
|
3 |
+
import os
|
4 |
+
from openai import OpenAI
|
5 |
+
|
6 |
api_key = os.getenv('API_KEY')
|
7 |
+
base_url = os.getenv("BASE_URL")
|
8 |
|
9 |
+
client = OpenAI(
|
10 |
+
api_key=api_key,
|
11 |
+
base_url=base_url,
|
12 |
+
)
|
13 |
+
|
14 |
+
|
15 |
+
def extract_pdf_pypdf(pdf_dir):
|
16 |
+
import fitz
|
17 |
+
path = pdf_dir
|
18 |
+
|
19 |
+
try:
|
20 |
+
doc = fitz.open(path)
|
21 |
+
except:
|
22 |
+
print("can not read pdf")
|
23 |
+
return None
|
24 |
+
|
25 |
+
page_count = doc.page_count
|
26 |
+
file_content = ""
|
27 |
+
for page in range(page_count):
|
28 |
+
text = doc.load_page(page).get_text("text")
|
29 |
+
# 防止目录中包含References
|
30 |
+
file_content += text + "\n\n"
|
31 |
+
|
32 |
+
return file_content
|
33 |
+
|
34 |
+
|
35 |
+
def openai_api(messages):
|
36 |
+
try:
|
37 |
+
completion = client.chat.completions.create(
|
38 |
+
model="claude-3-5-sonnet-20240620",
|
39 |
+
messages=messages,
|
40 |
+
temperature=0.1,
|
41 |
+
max_tokens=8192,
|
42 |
+
# timeout=300,
|
43 |
+
stream=True
|
44 |
+
)
|
45 |
+
except Exception as ex:
|
46 |
+
print("api 出现如下异常%s" % ex)
|
47 |
+
return None
|
48 |
+
|
49 |
+
if completion:
|
50 |
+
try:
|
51 |
+
response_2_list = [chunk.choices[0].delta.content if chunk.choices[0].delta.content else "" for chunk in
|
52 |
+
completion]
|
53 |
+
print("response tokens:", len(response_2_list))
|
54 |
+
|
55 |
+
response_2_content = ''.join(response_2_list)
|
56 |
+
return response_2_content
|
57 |
+
except Exception as ex:
|
58 |
+
print("第二轮 出现如下异常%s" % ex)
|
59 |
+
return None
|
60 |
else:
|
61 |
+
print("第二轮出现异常")
|
62 |
+
return None
|
63 |
+
|
64 |
+
|
65 |
+
def predict(input_text, pdf_file):
|
66 |
+
if pdf_file is None:
|
67 |
+
return "Please upload a PDF file to proceed."
|
68 |
+
|
69 |
+
file_content = extract_pdf_pypdf(pdf_file.name)
|
70 |
+
messages = [
|
71 |
+
{
|
72 |
+
"role": "system",
|
73 |
+
"content": "You are an expert in information extraction from scientific literature.",
|
74 |
+
},
|
75 |
+
{"role": "user", "content": """Provided Text:
|
76 |
+
'''
|
77 |
+
{{""" + file_content + """}}
|
78 |
+
'''
|
79 |
+
""" + input_text}
|
80 |
+
]
|
81 |
+
extract_result = openai_api(messages)
|
82 |
+
|
83 |
+
return extract_result or "Too many users. Please wait a moment!"
|
84 |
|
85 |
|
86 |
def view_pdf(pdf_file):
|
87 |
+
if pdf_file is None:
|
88 |
+
return "Please upload a PDF file to view."
|
89 |
+
|
90 |
with open(pdf_file.name, 'rb') as f:
|
91 |
pdf_data = f.read()
|
|
|
|
|
92 |
b64_data = base64.b64encode(pdf_data).decode('utf-8')
|
|
|
93 |
return f"<embed src='data:application/pdf;base64,{b64_data}' type='application/pdf' width='100%' height='700px' />"
|
94 |
|
95 |
|
96 |
+
en_1 = """Could you please help me extract the information of 'title'/'journal'/'year'/'author'/'institution'/'email' from the previous content in a markdown table format?
|
97 |
+
If any of this information was not available in the paper, please replace it with the string `""`. If the property contains multiple entities, please use a list to contain.
|
98 |
+
"""
|
99 |
|
100 |
+
en_2 = """Could you please help me extract the information of 'title'/'journal'/'year'/'author'/'institution'/'email' from the previous content in a JSON format?
|
101 |
+
If any of this information was not available in the paper, please replace it with the string `""`. If the property contains multiple entities, please use a list to contain.
|
102 |
+
"""
|
103 |
|
104 |
+
examples = [[en_1], [en_2]]
|
105 |
|
106 |
+
with gr.Blocks(title="PaperExtractGPT") as demo:
|
107 |
gr.Markdown(
|
108 |
+
'''<p align="center">
|
|
|
|
|
|
|
109 |
<h1 align="center"> Paper Extract GPT </h1>
|
110 |
<p> How to use:
|
111 |
+
<br> <strong>1</strong>: Upload your PDF.
|
112 |
+
<br> <strong>2</strong>: Click "View PDF" to preview it.
|
113 |
+
<br> <strong>3</strong>: Enter your extraction prompt in the input box.
|
114 |
+
<br> <strong>4</strong>: Click "Generate" to extract, and the extracted information will display below.
|
115 |
</p>
|
116 |
'''
|
117 |
)
|
118 |
with gr.Row():
|
119 |
with gr.Column():
|
120 |
gr.Markdown('## Upload PDF')
|
121 |
+
file_input = gr.File(label="Upload your PDF", type="filepath")
|
122 |
viewer_button = gr.Button("View PDF")
|
123 |
+
file_out = gr.HTML(label="PDF Preview")
|
124 |
+
|
125 |
with gr.Column():
|
126 |
+
model_input = gr.Textbox(lines=7, placeholder='Enter your extraction prompt here', label='Input Prompt')
|
127 |
+
example = gr.Examples(examples=examples, inputs=model_input)
|
|
|
128 |
with gr.Row():
|
129 |
gen = gr.Button("Generate")
|
130 |
clr = gr.Button("Clear")
|
131 |
+
outputs = gr.Markdown(label='Output', show_label=True, value="""| Title | Journal | Year | Author | Institution | Email |
|
|
|
|
|
|
|
132 |
|---------------------------------------------|--------------------|------|-----------------------------------------------|-------------------------------------------------------|-----------------------|
|
133 |
| Paleomagnetic Study of Deccan Traps from Jabalpur to Amarkantak, Central India | J. Geomag. Geoelectr. | 1973 | R. K. VERMA, G. PULLAIAH, G.R. ANJANEYULU, P. K. MALLIK | National Geophysical Research Institute, Hyderabad, and Indian School o f Mines, Dhanbad | "" |
|
134 |
""")
|
135 |
|
136 |
+
gen.click(fn=predict, inputs=[model_input, file_input], outputs=outputs)
|
137 |
+
clr.click(fn=lambda: [gr.update(value=""), gr.update(value="")], inputs=None, outputs=[model_input, outputs])
|
|
|
|
|
|
|
138 |
viewer_button.click(view_pdf, inputs=file_input, outputs=file_out)
|
|
|
139 |
|
140 |
demo.launch()
|