Spaces:
Runtime error
Runtime error
Add app.py - with only grounding dino bounding box function
Browse files
app.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
from functools import partial
|
3 |
+
import cv2
|
4 |
+
import os
|
5 |
+
from io import BytesIO
|
6 |
+
from PIL import Image
|
7 |
+
import numpy as np
|
8 |
+
from pathlib import Path
|
9 |
+
import gradio as gr
|
10 |
+
|
11 |
+
import warnings
|
12 |
+
|
13 |
+
import torch
|
14 |
+
warnings.filterwarnings("ignore")
|
15 |
+
|
16 |
+
# grounding DINO
|
17 |
+
from groundingdino.models import build_model
|
18 |
+
from groundingdino.util.slconfig import SLConfig
|
19 |
+
from groundingdino.util.utils import clean_state_dict
|
20 |
+
from groundingdino.util.inference import annotate, load_image, predict
|
21 |
+
import groundingdino.datasets.transforms as T
|
22 |
+
|
23 |
+
from huggingface_hub import hf_hub_download
|
24 |
+
|
25 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
26 |
+
|
27 |
+
|
28 |
+
# Use this command for evaluate the GLIP-T model
|
29 |
+
config_file = "groundingdino/config/GroundingDINO_SwinT_OGC.py"
|
30 |
+
ckpt_repo_id = "ShilongLiu/GroundingDINO"
|
31 |
+
ckpt_filename = "groundingdino_swint_ogc.pth"
|
32 |
+
groundingdino_device = 'cpu'
|
33 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
34 |
+
|
35 |
+
|
36 |
+
def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
|
37 |
+
args = SLConfig.fromfile(model_config_path)
|
38 |
+
model = build_model(args)
|
39 |
+
args.device = device
|
40 |
+
|
41 |
+
cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
|
42 |
+
checkpoint = torch.load(cache_file, map_location='cpu')
|
43 |
+
log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
|
44 |
+
print("Model loaded from {} \n => {}".format(cache_file, log))
|
45 |
+
_ = model.eval()
|
46 |
+
return model
|
47 |
+
|
48 |
+
def image_transform_grounding(init_image):
|
49 |
+
transform = T.Compose([
|
50 |
+
T.RandomResize([800], max_size=1333),
|
51 |
+
T.ToTensor(),
|
52 |
+
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
53 |
+
])
|
54 |
+
image, _ = transform(init_image, None) # 3, h, w
|
55 |
+
return init_image, image
|
56 |
+
|
57 |
+
def image_transform_grounding_for_vis(init_image):
|
58 |
+
transform = T.Compose([
|
59 |
+
T.RandomResize([800], max_size=1333),
|
60 |
+
])
|
61 |
+
image, _ = transform(init_image, None) # 3, h, w
|
62 |
+
return image
|
63 |
+
|
64 |
+
model = load_model_hf(config_file, ckpt_repo_id, ckpt_filename, groundingdino_device)
|
65 |
+
|
66 |
+
def get_grounding_box(input_image, grounding_caption, box_threshold, text_threshold):
|
67 |
+
init_image = input_image.convert("RGB")
|
68 |
+
original_size = init_image.size
|
69 |
+
|
70 |
+
_, image_tensor = image_transform_grounding(init_image)
|
71 |
+
image_pil: Image = image_transform_grounding_for_vis(init_image)
|
72 |
+
|
73 |
+
# run grounding
|
74 |
+
boxes, logits, phrases = predict(model, image_tensor, grounding_caption, box_threshold, text_threshold, device=groundingdino_device)
|
75 |
+
annotated_frame = annotate(image_source=np.asarray(image_pil), boxes=boxes, logits=logits, phrases=phrases)
|
76 |
+
image_with_box = Image.fromarray(cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB))
|
77 |
+
|
78 |
+
|
79 |
+
return image_with_box
|
80 |
+
|
81 |
+
if __name__ == "__main__":
|
82 |
+
|
83 |
+
parser = argparse.ArgumentParser("Grounding SAM demo", add_help=True)
|
84 |
+
parser.add_argument("--debug", action="store_true", help="using debug mode")
|
85 |
+
parser.add_argument("--share", action="store_true", help="share the app")
|
86 |
+
args = parser.parse_args()
|
87 |
+
|
88 |
+
print(f'args = {args}')
|
89 |
+
|
90 |
+
block = gr.Blocks().queue()
|
91 |
+
with block:
|
92 |
+
gr.Markdown("# [Grounding SAM Playground]")
|
93 |
+
with gr.Row():
|
94 |
+
with gr.Column():
|
95 |
+
input_image = gr.Image(source='upload', type="pil")
|
96 |
+
grounding_caption = gr.Textbox(label="Detection Prompt")
|
97 |
+
run_button = gr.Button(label="Run")
|
98 |
+
with gr.Accordion("Advanced options", open=False):
|
99 |
+
box_threshold = gr.Slider(
|
100 |
+
label="Box Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
|
101 |
+
)
|
102 |
+
text_threshold = gr.Slider(
|
103 |
+
label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
|
104 |
+
)
|
105 |
+
|
106 |
+
with gr.Column():
|
107 |
+
gallery = gr.outputs.Image(
|
108 |
+
type="pil",
|
109 |
+
# label="grounding results"
|
110 |
+
).style(full_width=True, full_height=True)
|
111 |
+
# gallery = gr.Gallery(label="Generated images", show_label=False).style(
|
112 |
+
# grid=[1], height="auto", container=True, full_width=True, full_height=True)
|
113 |
+
|
114 |
+
DESCRIPTION = '### This demo from [Grounded-Segment-Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything) and kudos to thier excellent works. Welcome everyone to try this out and learn together!'
|
115 |
+
gr.Markdown(DESCRIPTION)
|
116 |
+
run_button.click(fn=get_grounding_box, inputs=[
|
117 |
+
input_image, grounding_caption, box_threshold, text_threshold], outputs=[gallery])
|
118 |
+
|
119 |
+
block.launch(share=False, show_api=False, show_error=True)
|