import argparse from functools import partial import cv2 import os from io import BytesIO from PIL import Image import numpy as np from pathlib import Path import gradio as gr import warnings import torch warnings.filterwarnings("ignore") # grounding DINO from groundingdino.models import build_model from groundingdino.util.slconfig import SLConfig from groundingdino.util.utils import clean_state_dict from groundingdino.util.inference import annotate, load_image, predict import groundingdino.datasets.transforms as T from huggingface_hub import hf_hub_download os.environ["CUDA_VISIBLE_DEVICES"] = "0" # Use this command for evaluate the GLIP-T model config_file = "groundingdino/config/GroundingDINO_SwinT_OGC.py" ckpt_repo_id = "ShilongLiu/GroundingDINO" ckpt_filename = "groundingdino_swint_ogc.pth" groundingdino_device = 'cpu' device = 'cuda' if torch.cuda.is_available() else 'cpu' def load_model_hf(model_config_path, repo_id, filename, device='cpu'): args = SLConfig.fromfile(model_config_path) model = build_model(args) args.device = device cache_file = hf_hub_download(repo_id=repo_id, filename=filename) checkpoint = torch.load(cache_file, map_location='cpu') log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False) print("Model loaded from {} \n => {}".format(cache_file, log)) _ = model.eval() return model def image_transform_grounding(init_image): transform = T.Compose([ T.RandomResize([800], max_size=1333), T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) image, _ = transform(init_image, None) # 3, h, w return init_image, image def image_transform_grounding_for_vis(init_image): transform = T.Compose([ T.RandomResize([800], max_size=1333), ]) image, _ = transform(init_image, None) # 3, h, w return image model = load_model_hf(config_file, ckpt_repo_id, ckpt_filename, groundingdino_device) def get_grounding_box(input_image, grounding_caption, box_threshold, text_threshold): init_image = input_image.convert("RGB") original_size = init_image.size _, image_tensor = image_transform_grounding(init_image) image_pil: Image = image_transform_grounding_for_vis(init_image) # run grounding boxes, logits, phrases = predict(model, image_tensor, grounding_caption, box_threshold, text_threshold, device=groundingdino_device) annotated_frame = annotate(image_source=np.asarray(image_pil), boxes=boxes, logits=logits, phrases=phrases) image_with_box = Image.fromarray(cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB)) return image_with_box if __name__ == "__main__": parser = argparse.ArgumentParser("Grounding SAM demo", add_help=True) parser.add_argument("--debug", action="store_true", help="using debug mode") parser.add_argument("--share", action="store_true", help="share the app") args = parser.parse_args() print(f'args = {args}') block = gr.Blocks().queue() with block: gr.Markdown("# [Grounding SAM Playground]") with gr.Row(): with gr.Column(): input_image = gr.Image(source='upload', type="pil") grounding_caption = gr.Textbox(label="Detection Prompt") run_button = gr.Button(label="Run") with gr.Accordion("Advanced options", open=False): box_threshold = gr.Slider( label="Box Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001 ) text_threshold = gr.Slider( label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001 ) with gr.Column(): gallery = gr.outputs.Image( type="pil", # label="grounding results" ).style(full_width=True, full_height=True) # gallery = gr.Gallery(label="Generated images", show_label=False).style( # grid=[1], height="auto", container=True, full_width=True, full_height=True) DESCRIPTION = '### This demo from [Grounded-Segment-Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything) and kudos to thier excellent works. Welcome everyone to try this out and learn together!' gr.Markdown(DESCRIPTION) run_button.click(fn=get_grounding_box, inputs=[ input_image, grounding_caption, box_threshold, text_threshold], outputs=[gallery]) block.launch(share=False, show_api=False, show_error=True)