import sqlite3 import gradio as gr from hashlib import md5 as hash_algo from re import match from io import BytesIO from pypdf import PdfReader from llm_rs import AutoModel,SessionConfig,GenerationConfig,Precision repo_name = "rustformers/mpt-7b-ggml" file_name = "mpt-7b-instruct-q5_1-ggjt.bin" script_env = 'prod' session_config = SessionConfig(threads=2,batch_size=2) model = AutoModel.from_pretrained(repo_name, model_file=file_name, session_config=session_config,verbose=True) def process_stream(rules, log, temperature, top_p, top_k, max_new_tokens, seed): con = sqlite3.connect("history.db") cur = con.cursor() instruction = '' hashes = [] if type(rules) is not list: rules = [rules] for rule in rules: data, hash = get_file_contents(rule) instruction += data + '\n' hashes.append(hash) hashes.sort() hashes = hash_algo(''.join(hashes).encode()).hexdigest() largest = 0 lines = instruction.split('\r\n') if len(lines) == 1: lines = instruction.split('\n') for line in lines: m = match('^(\d+)\.', line) if m != None: num = int(line[m.start():m.end()-1]) if num > largest: largest = num instruction += str(largest + 1) + '. ' query, hash = get_file_contents(log) hashes = hash_algo((hashes + hash).encode()).hexdigest() instruction = instruction.replace('\r\r\n', '\n') prompt=f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers. Q: Read the rules stated below and check the queries for any violation. State the rules which are violated by a query (if any). Also suggest a possible remediation, if possible. Do not make any assumptions outside of the rules stated below. {instruction}The queries are as follows: {query} A: ### Response: Answer:""" response = "" row = cur.execute('SELECT response FROM queries WHERE hexdigest = ?', [hashes]).fetchone() if row != None: response += "Cached Result:\n" + row[0] yield response else: if script_env != 'test': generation_config = GenerationConfig(seed=seed,temperature=temperature,top_p=top_p,top_k=top_k,max_new_tokens=max_new_tokens) streamer = model.stream(prompt=prompt,generation_config=generation_config) for new_text in streamer: response += new_text yield response else: num = 0 while num < 100: response += " " + str(num) num += 1 yield response cur.execute('INSERT INTO queries VALUES(?, ?)', (hashes, response)) con.commit() cur.close() con.close() def get_file_contents(file): data = None byte_hash = '' with open(file.name, 'rb') as f: data = f.read() byte_hash = hash_algo(data).hexdigest() if file.name.endswith('.pdf'): rdr = PdfReader(BytesIO(data)) data = '' for page in rdr.pages: data += page.extract_text() else: data = data.decode() if file.name.endswith(".csv"): data = data.replace(',', ' ') return (data, byte_hash) def upload_log_file(files): file_paths = [file.name for file in files] return file_paths def upload_file(files): file_paths = [file.name for file in files] return file_paths with gr.Blocks( theme=gr.themes.Soft(), css=".disclaimer {font-variant-caps: all-small-caps;}", ) as demo: gr.Markdown( """