File size: 4,570 Bytes
4f55ca2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import functools
from abc import ABC, abstractmethod
from collections import deque
from typing import Callable, Tuple, Union

import numpy as np
import torch
from jaxtyping import Float

from ibydmt.payoff import HSIC, cMMD, xMMD
from ibydmt.wealth import get_wealth

Array = Union[np.ndarray, torch.Tensor]


class Tester(ABC):
    def __init__(self):
        pass

    @abstractmethod
    def test(self, *args, **kwargs) -> Tuple[bool, int]:
        pass


class SequentialTester(Tester):
    def __init__(self, config):
        super().__init__()
        self.wealth = get_wealth(config.wealth)(config)

        self.tau_max = config.tau_max


class SKIT(SequentialTester):
    """Global Independence Tester"""

    def __init__(self, config):
        super().__init__(config)
        self.payoff = HSIC(config)

    def test(self, Y: Float[Array, "N"], Z: Float[Array, "N"]) -> Tuple[bool, int]:
        D = np.stack([Y, Z], axis=1)
        for t in range(1, self.tau_max):
            d = D[2 * t : 2 * (t + 1)]
            prev_d = D[: 2 * t]

            null_d = np.stack([d[:, 0], np.flip(d[:, 1])], axis=1)

            payoff = self.payoff.compute(d, null_d, prev_d)
            self.wealth.update(payoff)

            if self.wealth.rejected:
                return (True, t)
        return (False, t)


class cSKIT(SequentialTester):
    """Global Conditional Independence Tester"""

    def __init__(self, config):
        super().__init__(config)
        self.payoff = cMMD(config)

    def _sample(
        self,
        z: Float[Array, "N D"],
        j: int = None,
        cond_p: Callable[[Float[Array, "N D"], list[int]], Float[Array, "N D"]] = None,
    ) -> Tuple[Float[Array, "N"], Float[Array, "N"], Float[Array, "N D-1"]]:
        C = list(set(range(z.shape[1])) - {j})

        zj, cond_z = z[:, [j]], z[:, C]
        samples = cond_p(z, C)
        null_zj = samples[:, [j]]
        return zj, null_zj, cond_z

    def test(
        self,
        Y: Float[Array, "N"],
        Z: Float[Array, "N D"],
        j: int,
        cond_p: Callable[[Float[Array, "N D"], list[int]], Float[Array, "N D"]],
    ) -> Tuple[bool, int]:
        sample = functools.partial(self._sample, j=j, cond_p=cond_p)

        prev_y, prev_z = Y[:1][:, None], Z[:1]
        prev_zj, prev_null_zj, prev_cond_z = sample(prev_z)
        prev_d = np.concatenate([prev_y, prev_zj, prev_null_zj, prev_cond_z], axis=-1)
        for t in range(1, self.tau_max):
            y, z = Y[[t]][:, None], Z[[t]]
            zj, null_zj, cond_z = sample(z)

            u = np.concatenate([y, zj, cond_z], axis=-1)
            null_u = np.concatenate([y, null_zj, cond_z], axis=-1)

            payoff = self.payoff.compute(u, null_u, prev_d)
            self.wealth.update(payoff)

            d = np.concatenate([y, zj, null_zj, cond_z], axis=-1)
            prev_d = np.vstack([prev_d, d])

            if self.wealth.rejected:
                return (True, t)
        return (False, t)


class xSKIT(SequentialTester):
    """Local Conditional Independence Tester"""

    def __init__(self, config):
        super().__init__(config)
        self.payoff = xMMD(config)

        self._queue = deque()

    def _sample(
        self,
        z: Float[Array, "D"],
        j: int,
        C: list[int],
        cond_p: Callable[[Float[Array, "D"], list[int], int], Float[Array, "N D2"]],
        model: Callable[[Float[Array, "N D2"]], Float[Array, "N"]],
    ) -> Tuple[Float[Array, "1"], Float[Array, "1"]]:

        if len(self._queue) == 0:
            Cuj = C + [j]

            h = cond_p(z, Cuj, self.tau_max)
            null_h = cond_p(z, C, self.tau_max)

            y = model(h)[:, None]
            null_y = model(null_h)[:, None]

            self._queue.extend(zip(y, null_y))

        return self._queue.pop()

    def test(
        self,
        z: Float[Array, "D"],
        j: int,
        C: list[int],
        cond_p: Callable[[Float[Array, "D"], list[int], int], Float[Array, "N D2"]],
        model: Callable[[Float[Array, "N D2"]], Float[Array, "N"]],
    ) -> Tuple[bool, int]:
        sample = functools.partial(self._sample, z, j, C, cond_p, model)

        prev_d = np.stack(sample(), axis=1)
        for t in range(1, self.tau_max):
            y, null_y = sample()

            payoff = self.payoff.compute(y, null_y, prev_d)
            self.wealth.update(payoff)

            d = np.stack([y, null_y], axis=1)
            prev_d = np.vstack([prev_d, d])

            if self.wealth.rejected:
                return (True, t)
        return (False, t)