File size: 5,636 Bytes
4f55ca2
 
 
 
a40e67a
 
 
 
4f55ca2
a40e67a
4f55ca2
 
a40e67a
4f55ca2
a40e67a
 
 
 
 
 
 
 
 
 
 
 
 
4f55ca2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a40e67a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f55ca2
a40e67a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import torch
import clip
import open_clip
import h5py
import streamlit as st
import numpy as np
import time
from concurrent.futures import ThreadPoolExecutor, as_completed

import ml_collections
from huggingface_hub import hf_hub_download

from ibydmt.test import xSKIT
from app_lib.utils import SUPPORTED_MODELS
from app_lib.ckde import cKDE

rng = np.random.default_rng()

testing_config = ml_collections.ConfigDict()
testing_config.significance_level = 0.05
testing_config.wealth = "ons"
testing_config.bet = "tanh"
testing_config.kernel = "rbf"
testing_config.kernel_scale_method = "quantile"
testing_config.kernel_scale = 0.5
testing_config.tau_max = 200
testing_config.r = 10


def _get_open_clip_model(model_name, device):
    backbone = model_name.split(":")[-1]

    model, _, preprocess = open_clip.create_model_and_transforms(
        SUPPORTED_MODELS[model_name], device=device
    )
    model.eval()
    tokenizer = open_clip.get_tokenizer(backbone)
    return model, preprocess, tokenizer


def _get_clip_model(model_name, device):
    backbone = model_name.split(":")[-1]
    model, preprocess = clip.load(backbone, device=device)
    tokenizer = clip.tokenize
    return model, preprocess, tokenizer


def load_dataset(dataset_name, model_name):
    dataset_path = hf_hub_download(
        repo_id="jacopoteneggi/IBYDMT",
        filename=f"{dataset_name}_{model_name}_train.h5",
        repo_type="dataset",
    )

    with h5py.File(dataset_path, "r") as dataset:
        embedding = dataset["embedding"][:]
    return embedding


def load_model(model_name, device):
    if "open_clip" in model_name:
        model, preprocess, tokenizer = _get_open_clip_model(model_name, device)
    elif "clip" in model_name:
        model, preprocess, tokenizer = _get_clip_model(model_name, device)
    return model, preprocess, tokenizer


@torch.no_grad()
@torch.cuda.amp.autocast()
def encode_concepts(tokenizer, model, concepts, device):
    concepts_text = tokenizer(concepts).to(device)

    concept_features = model.encode_text(concepts_text)
    concept_features /= torch.linalg.norm(concept_features, dim=-1, keepdim=True)
    return concept_features.cpu().numpy()


@torch.no_grad()
@torch.cuda.amp.autocast()
def encode_image(model, preprocess, image, device):
    image = preprocess(image)
    image = image.unsqueeze(0)
    image = image.to(device)

    image_features = model.encode_image(image)
    image_features /= image_features.norm(dim=-1, keepdim=True)
    return image_features.cpu().numpy()


@torch.no_grad()
@torch.cuda.amp.autocast()
def encode_class_name(tokenizer, model, class_name, device):
    class_text = tokenizer([f"A photo of a {class_name}"]).to(device)

    class_features = model.encode_text(class_text)
    class_features /= torch.linalg.norm(class_features, dim=-1, keepdim=True)
    return class_features.cpu().numpy()


def _sample_random_subset(concept_idx, concepts, cardinality):
    sample_idx = list(set(range(len(concepts))) - {concept_idx})
    return rng.permutation(sample_idx)[:cardinality].tolist()


def _test(z, concept_idx, concepts, cardinality, sampler, classifier):
    def cond_p(z, cond_idx, m):
        _, sample_h = sampler.sample(z, cond_idx, m=m)
        return sample_h

    def f(h):
        output = h @ classifier.T
        return output.squeeze()

    rejected_hist, tau_hist, wealth_hist, subset_hist = [], [], [], []
    for _ in range(testing_config.r):
        subset_idx = _sample_random_subset(concept_idx, concepts, cardinality)
        subset = [concepts[idx] for idx in subset_idx]

        tester = xSKIT(testing_config)
        rejected, tau = tester.test(
            z, concept_idx, subset_idx, cond_p, f, interrupt_on_rejection=False
        )
        wealth = tester.wealth._wealth

        rejected_hist.append(rejected)
        tau_hist.append(tau)
        wealth_hist.append(wealth)
        subset_hist.append(subset)

    return {
        "concept": concepts[concept_idx],
        "rejected": rejected_hist,
        "tau": tau_hist,
        "wealth": wealth_hist,
        "subset": subset_hist,
    }


def test(image, class_name, concepts, cardinality, dataset_name, model_name, device):
    with st.spinner("Loading model"):
        model, preprocess, tokenizer = load_model(model_name, device)

    with st.spinner("Encoding concepts"):
        cbm = encode_concepts(tokenizer, model, concepts, device)

    with st.spinner("Encoding image"):
        h = encode_image(model, preprocess, image, device)
        z = h @ cbm.T
        z = z.squeeze()

    with st.spinner("Testing"):
        progress_bar = st.progress(0)

        embedding = load_dataset("imagenette", model_name)
        semantics = embedding @ cbm.T
        sampler = cKDE(embedding, semantics)

        classifier = encode_class_name(tokenizer, model, class_name, device)

        with ThreadPoolExecutor() as executor:
            futures = [
                executor.submit(
                    _test, z, concept_idx, concepts, cardinality, sampler, classifier
                )
                for concept_idx in range(len(concepts))
            ]

            results = []
            for idx, future in enumerate(as_completed(futures)):
                results.append(future.result())
                progress_bar.progress((idx + 1) / len(concepts))

        # print(results)
        # wealth = np.empty((testing_config.tau_max, len(concepts)))
        # wealth[:] = np.nan
        # for _results in results:
        #     concept_idx = concepts.index(_results["concept"])
        #     _wealth =

    st.session_state.disabled = False
    st.experimental_rerun()