Spaces:
Sleeping
Sleeping
Update
Browse files- app_lib/viz.py +64 -2
app_lib/viz.py
CHANGED
@@ -1,8 +1,67 @@
|
|
|
|
1 |
import pandas as pd
|
2 |
import plotly.express as px
|
|
|
3 |
import streamlit as st
|
4 |
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
def _viz_wealth(results):
|
7 |
wealth = results["wealth"]
|
8 |
concepts = results["concepts"]
|
@@ -27,6 +86,7 @@ def _viz_wealth(results):
|
|
27 |
annotation_position="bottom right",
|
28 |
)
|
29 |
fig.update_yaxes(range=[0, 1.5 * 1 / significance_level])
|
|
|
30 |
st.plotly_chart(fig, use_container_width=True)
|
31 |
|
32 |
|
@@ -40,14 +100,16 @@ def viz_results():
|
|
40 |
|
41 |
with rank_tab:
|
42 |
st.subheader("Rank of Semantic Importance")
|
43 |
-
|
44 |
with st.expander("Details"):
|
45 |
st.write(
|
46 |
"This tab shows the rank of semantic importance of the concepts for the predictions of the model on the image. Concepts are sorted by increasing rejection time, where a shorter rejection time indicates higher importance."
|
47 |
)
|
|
|
|
|
|
|
|
|
48 |
with wealth_tab:
|
49 |
st.subheader("Wealth Process of Testing Procedures")
|
50 |
-
|
51 |
with st.expander("Details"):
|
52 |
st.write(
|
53 |
"This tab shows the average wealth process of the testing procedures for random draws of conditioning subsets with the same cardinality. The black dashed line represents the rejection threshold."
|
|
|
1 |
+
import numpy as np
|
2 |
import pandas as pd
|
3 |
import plotly.express as px
|
4 |
+
import plotly.graph_objects as go
|
5 |
import streamlit as st
|
6 |
|
7 |
|
8 |
+
def _viz_rank(results):
|
9 |
+
rejected = results["rejected"]
|
10 |
+
tau = results["tau"]
|
11 |
+
concepts = results["concepts"]
|
12 |
+
significance_level = results["significance_level"]
|
13 |
+
|
14 |
+
rejected_mu = rejected.mean(axis=0)
|
15 |
+
tau_mu = tau.mean(axis=0)
|
16 |
+
|
17 |
+
sorted_idx = np.argsort(tau_mu)[::-1]
|
18 |
+
sorted_tau = tau_mu[sorted_idx]
|
19 |
+
sorted_rejected = rejected_mu[sorted_idx]
|
20 |
+
sorted_concepts = [concepts[idx] for idx in sorted_idx]
|
21 |
+
|
22 |
+
rank_df = []
|
23 |
+
for concept, tau, rejected in zip(sorted_concepts, sorted_tau, sorted_rejected):
|
24 |
+
rank_df.append({"concept": concept, "tau": tau, "rejected": rejected})
|
25 |
+
rank_df = pd.DataFrame(rank_df)
|
26 |
+
|
27 |
+
fig = go.Figure()
|
28 |
+
|
29 |
+
fig.add_trace(
|
30 |
+
go.Scatter(
|
31 |
+
x=rank_df["rejected"],
|
32 |
+
y=rank_df["concept"],
|
33 |
+
marker=dict(size=8),
|
34 |
+
line=dict(color="#1f78b4", dash="dash"),
|
35 |
+
name="Rejection rate",
|
36 |
+
)
|
37 |
+
)
|
38 |
+
fig.add_trace(
|
39 |
+
go.Bar(
|
40 |
+
x=rank_df["tau"],
|
41 |
+
y=rank_df["concept"],
|
42 |
+
orientation="h",
|
43 |
+
marker=dict(color="#a6cee3"),
|
44 |
+
name="Normalized rejection time",
|
45 |
+
)
|
46 |
+
)
|
47 |
+
fig.add_shape(
|
48 |
+
type="line",
|
49 |
+
yref="paper",
|
50 |
+
line=dict(color="black", dash="dash"),
|
51 |
+
x0=significance_level,
|
52 |
+
x1=significance_level,
|
53 |
+
y0=0,
|
54 |
+
y1=1,
|
55 |
+
name="significance level",
|
56 |
+
showlegend=True,
|
57 |
+
)
|
58 |
+
fig.update_layout(yaxis_title="Rank of importance", xaxis_title="")
|
59 |
+
|
60 |
+
_, centercol, _ = st.columns([1, 4, 1])
|
61 |
+
with centercol:
|
62 |
+
st.plotly_chart(fig, use_container_width=True)
|
63 |
+
|
64 |
+
|
65 |
def _viz_wealth(results):
|
66 |
wealth = results["wealth"]
|
67 |
concepts = results["concepts"]
|
|
|
86 |
annotation_position="bottom right",
|
87 |
)
|
88 |
fig.update_yaxes(range=[0, 1.5 * 1 / significance_level])
|
89 |
+
# fig.update_layout(legend=dict(orientation="h", x=0, y=1.2))
|
90 |
st.plotly_chart(fig, use_container_width=True)
|
91 |
|
92 |
|
|
|
100 |
|
101 |
with rank_tab:
|
102 |
st.subheader("Rank of Semantic Importance")
|
|
|
103 |
with st.expander("Details"):
|
104 |
st.write(
|
105 |
"This tab shows the rank of semantic importance of the concepts for the predictions of the model on the image. Concepts are sorted by increasing rejection time, where a shorter rejection time indicates higher importance."
|
106 |
)
|
107 |
+
|
108 |
+
if results is not None:
|
109 |
+
_viz_rank(results)
|
110 |
+
|
111 |
with wealth_tab:
|
112 |
st.subheader("Wealth Process of Testing Procedures")
|
|
|
113 |
with st.expander("Details"):
|
114 |
st.write(
|
115 |
"This tab shows the average wealth process of the testing procedures for random draws of conditioning subsets with the same cardinality. The black dashed line represents the rejection threshold."
|