Spaces:
Runtime error
Runtime error
import os | |
import random | |
from os import path | |
from contextlib import nullcontext | |
import time | |
from sys import platform | |
import torch | |
cache_path = path.join(path.dirname(path.abspath(__file__)), "models") | |
os.environ["TRANSFORMERS_CACHE"] = cache_path | |
os.environ["HF_HUB_CACHE"] = cache_path | |
os.environ["HF_HOME"] = cache_path | |
is_mac = platform == "darwin" | |
def should_use_fp16(): | |
if is_mac: | |
return True | |
gpu_props = torch.cuda.get_device_properties("cuda") | |
if gpu_props.major < 6: | |
return False | |
nvidia_16_series = ["1660", "1650", "1630"] | |
for x in nvidia_16_series: | |
if x in gpu_props.name: | |
return False | |
return True | |
class timer: | |
def __init__(self, method_name="timed process"): | |
self.method = method_name | |
def __enter__(self): | |
self.start = time.time() | |
print(f"{self.method} starts") | |
def __exit__(self, exc_type, exc_val, exc_tb): | |
end = time.time() | |
print(f"{self.method} took {str(round(end - self.start, 2))}s") | |
def load_models(model_id="stabilityai/stable-diffusion-xl-base-1.0"): | |
from diffusers import UNet2DConditionModel, AutoPipelineForImage2Image, LCMScheduler | |
from diffusers.utils import load_image | |
if not is_mac: | |
torch.backends.cuda.matmul.allow_tf32 = True | |
use_fp16 = should_use_fp16() | |
lora_id = "artificialguybr/LogoRedmond-LogoLoraForSDXL-V2" | |
unet = UNet2DConditionModel.from_pretrained("latent-consistency/lcm-sdxl", torch_dtype=torch.float16, variant="fp16") | |
if use_fp16: | |
pipe = AutoPipelineForImage2Image.from_pretrained( | |
model_id, | |
unet=unet, | |
cache_dir=cache_path, | |
torch_dtype=torch.float16, | |
variant="fp16", | |
safety_checker=None | |
) | |
else: | |
pipe = AutoPipelineForImage2Image.from_pretrained( | |
model_id, | |
unet=unet, | |
cache_dir=cache_path, | |
safety_checker=None | |
) | |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
pipe.load_lora_weights(lora_id) | |
pipe.fuse_lora() | |
device = "mps" if is_mac else "cuda" | |
pipe.to(device=device) | |
generator = torch.Generator() | |
def infer( | |
prompt, | |
image, | |
num_inference_steps=4, | |
guidance_scale=1, | |
strength=0.9, | |
seed=random.randrange(0, 2**63) | |
): | |
with torch.inference_mode(): | |
with torch.autocast("cuda") if device == "cuda" else nullcontext(): | |
with timer("inference"): | |
return pipe( | |
prompt=prompt, | |
image=load_image(image), | |
generator=generator.manual_seed(seed), | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
strength=strength | |
).images[0] | |
return infer | |