Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
import pathlib | |
import os | |
import gradio as gr | |
import huggingface_hub | |
import numpy as np | |
import functools | |
from dataclasses import dataclass | |
from mivolo.predictor import Predictor | |
class Cfg: | |
detector_weights: str | |
checkpoint: str | |
device: str = "cpu" | |
with_persons: bool = True | |
disable_faces: bool = False | |
draw: bool = True | |
DESCRIPTION = """ | |
# MiVOLO: Multi-input Transformer for Age and Gender Estimation | |
This is an official demo for https://github.com/WildChlamydia/MiVOLO.\n | |
Telegram channel: https://t.me/+K0i2fLGpVKBjNzUy (Russian language) | |
""" | |
HF_TOKEN = os.getenv('HF_TOKEN') | |
def load_models(): | |
detector_path = huggingface_hub.hf_hub_download('iitolstykh/demo_yolov8_detector', | |
'yolov8x_person_face.pt') | |
age_gender_path_v1 = huggingface_hub.hf_hub_download('iitolstykh/demo_xnet_volo_cross', | |
'checkpoint-377.pth.tar', | |
use_auth_token=HF_TOKEN) | |
age_gender_path_v2 = huggingface_hub.hf_hub_download('iitolstykh/demo_xnet_volo_cross', | |
'mivolo_v2_384_0.15.pth.tar', | |
use_auth_token=HF_TOKEN) | |
predictor_cfg_v1 = Cfg(detector_path, age_gender_path_v1) | |
predictor_cfg_v2 = Cfg(detector_path, age_gender_path_v2) | |
predictor_v1 = Predictor(predictor_cfg_v1) | |
predictor_v2 = Predictor(predictor_cfg_v2) | |
return predictor_v1, predictor_v2 | |
def detect( | |
image: np.ndarray, | |
score_threshold: float, | |
iou_threshold: float, | |
mode: str, | |
predictor: Predictor | |
) -> np.ndarray: | |
# input is rgb image, output must be rgb too | |
predictor.detector.detector_kwargs['conf'] = score_threshold | |
predictor.detector.detector_kwargs['iou'] = iou_threshold | |
if mode == "Use persons and faces": | |
use_persons = True | |
disable_faces = False | |
elif mode == "Use persons only": | |
use_persons = True | |
disable_faces = True | |
elif mode == "Use faces only": | |
use_persons = False | |
disable_faces = False | |
predictor.age_gender_model.meta.use_persons = use_persons | |
predictor.age_gender_model.meta.disable_faces = disable_faces | |
image = image[:, :, ::-1] # RGB -> BGR | |
detected_objects, out_im = predictor.recognize(image) | |
return out_im[:, :, ::-1] # BGR -> RGB | |
def clear(): | |
return None, 0.4, 0.7, "Use persons and faces", None | |
predictor_v1, predictor_v2 = load_models() | |
prediction_func_v1 = functools.partial(detect, predictor=predictor_v1) | |
prediction_func_v2 = functools.partial(detect, predictor=predictor_v2) | |
image_dir = pathlib.Path('images') | |
examples = [[path.as_posix(), 0.4, 0.7, "Use persons and faces"] for path in sorted(image_dir.glob('*.jpg'))] | |
with gr.Blocks(theme=gr.themes.Default(), css="style.css") as demo_v1: | |
with gr.Row(): | |
with gr.Column(): | |
image = gr.Image(label='Input', type='numpy') | |
score_threshold = gr.Slider(0, 1, value=0.4, step=0.05, label='Detector Score Threshold') | |
iou_threshold = gr.Slider(0, 1, value=0.7, step=0.05, label='NMS Iou Threshold') | |
mode = gr.Radio(["Use persons and faces", "Use persons only", "Use faces only"], | |
value="Use persons and faces", | |
label="Inference mode", | |
info="What to use for gender and age recognition") | |
with gr.Row(): | |
clear_button = gr.Button("Clear") | |
with gr.Column(): | |
run_button = gr.Button("Submit", variant="primary") | |
with gr.Column(): | |
result = gr.Image(label='Output', type='numpy') | |
inputs = [image, score_threshold, iou_threshold, mode] | |
gr.Examples(examples=examples, | |
inputs=inputs, | |
outputs=result, | |
fn=prediction_func_v1, | |
cache_examples=False) | |
run_button.click(fn=prediction_func_v1, inputs=inputs, outputs=result, api_name='predict') | |
clear_button.click(fn=clear, inputs=None, outputs=[image, score_threshold, iou_threshold, mode, result]) | |
with gr.Blocks(theme=gr.themes.Default(), css="style.css") as demo_v2: | |
with gr.Row(): | |
with gr.Column(): | |
image = gr.Image(label='Input', type='numpy') | |
score_threshold = gr.Slider(0, 1, value=0.4, step=0.05, label='Detector Score Threshold') | |
iou_threshold = gr.Slider(0, 1, value=0.7, step=0.05, label='NMS Iou Threshold') | |
mode = gr.Radio(["Use persons and faces", "Use persons only", "Use faces only"], | |
value="Use persons and faces", | |
label="Inference mode", | |
info="What to use for gender and age recognition") | |
with gr.Row(): | |
clear_button = gr.Button("Clear") | |
with gr.Column(): | |
run_button = gr.Button("Submit", variant="primary") | |
with gr.Column(): | |
result = gr.Image(label='Output', type='numpy') | |
inputs = [image, score_threshold, iou_threshold, mode] | |
gr.Examples(examples=examples, | |
inputs=inputs, | |
outputs=result, | |
fn=prediction_func_v2, | |
cache_examples=False) | |
run_button.click(fn=prediction_func_v2, inputs=inputs, outputs=result, api_name='predict') | |
clear_button.click(fn=clear, inputs=None, outputs=[image, score_threshold, iou_threshold, mode, result]) | |
with gr.Blocks(theme=gr.themes.Default(), css="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Tabs(): | |
with gr.Tab(label="MiVOLO_V1"): | |
demo_v1.render() | |
with gr.Tab(label="MiVOLO_V2"): | |
demo_v2.render() | |
if __name__ == "__main__": | |
demo.queue(max_size=15).launch() | |