Spaces:
Runtime error
Runtime error
Irina Tolstykh
commited on
Commit
·
f4e3f66
1
Parent(s):
5f16544
add inference paramters
Browse files
app.py
CHANGED
@@ -50,9 +50,31 @@ def load_models():
|
|
50 |
|
51 |
return predictor
|
52 |
|
53 |
-
def detect(
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
# input is rgb image, output must be rgb too
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
image = image[:, :, ::-1] # RGB -> BGR
|
57 |
detected_objects, out_im = predictor.recognize(image)
|
58 |
return out_im[:, :, ::-1] # BGR -> RGB
|
@@ -61,13 +83,21 @@ def detect(image: np.ndarray, predictor: Predictor) -> np.ndarray:
|
|
61 |
predictor = load_models()
|
62 |
|
63 |
image_dir = pathlib.Path('images')
|
64 |
-
examples = [[path.as_posix()] for path in sorted(image_dir.glob('*.jpg'))]
|
65 |
|
66 |
func = functools.partial(detect, predictor=predictor)
|
67 |
|
68 |
gr.Interface(
|
69 |
fn=func,
|
70 |
-
inputs=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
outputs=gr.Image(label='Output', type='numpy'),
|
72 |
examples=examples,
|
73 |
examples_per_page=30,
|
|
|
50 |
|
51 |
return predictor
|
52 |
|
53 |
+
def detect(
|
54 |
+
image: np.ndarray,
|
55 |
+
score_threshold: float,
|
56 |
+
iou_threshold: float,
|
57 |
+
mode: str,
|
58 |
+
predictor: Predictor
|
59 |
+
) -> np.ndarray:
|
60 |
# input is rgb image, output must be rgb too
|
61 |
|
62 |
+
predictor.detector.detector_kwargs['conf'] = score_threshold
|
63 |
+
predictor.detector.detector_kwargs['iou'] = iou_threshold
|
64 |
+
|
65 |
+
if mode == "Use persons and faces":
|
66 |
+
use_persons = True
|
67 |
+
disable_faces = False
|
68 |
+
elif mode == "Use persons only":
|
69 |
+
use_persons = True
|
70 |
+
disable_faces = True
|
71 |
+
elif mode == "Use faces only":
|
72 |
+
use_persons = False
|
73 |
+
disable_faces = False
|
74 |
+
|
75 |
+
predictor.age_gender_model.meta.use_persons = use_persons
|
76 |
+
predictor.age_gender_model.meta.disable_faces = disable_faces
|
77 |
+
|
78 |
image = image[:, :, ::-1] # RGB -> BGR
|
79 |
detected_objects, out_im = predictor.recognize(image)
|
80 |
return out_im[:, :, ::-1] # BGR -> RGB
|
|
|
83 |
predictor = load_models()
|
84 |
|
85 |
image_dir = pathlib.Path('images')
|
86 |
+
examples = [[path.as_posix(), 0.4, 0.7, "Use persons and faces"] for path in sorted(image_dir.glob('*.jpg'))]
|
87 |
|
88 |
func = functools.partial(detect, predictor=predictor)
|
89 |
|
90 |
gr.Interface(
|
91 |
fn=func,
|
92 |
+
inputs=[
|
93 |
+
gr.Image(label='Input', type='numpy'),
|
94 |
+
gr.Slider(0, 1, value=0.4, step=0.05, label='Score Threshold'),
|
95 |
+
gr.Slider(0, 1, value=0.7, step=0.05, label='Iou Threshold'),
|
96 |
+
gr.Radio(["Use persons and faces", "Use persons only", "Use faces only"],
|
97 |
+
value="Use persons and faces",
|
98 |
+
label="Inference mode",
|
99 |
+
info="What to use for gender and age recognition"),
|
100 |
+
],
|
101 |
outputs=gr.Image(label='Output', type='numpy'),
|
102 |
examples=examples,
|
103 |
examples_per_page=30,
|