jaimin's picture
Upload 78 files
bf53f45 verified
raw
history blame
7.86 kB
import argparse
import os
from collections import defaultdict
from typing import Dict, List, Optional
import cv2
import pandas as pd
import tqdm
from mivolo.data.data_reader import PictureInfo, get_all_files
from mivolo.model.yolo_detector import Detector, PersonAndFaceResult
from preparation_utils import get_additional_bboxes, get_main_face, save_annotations
def read_adience_annotations(annotations_files):
annotations_per_image = {}
stat_per_fold = defaultdict(int)
cols = ["user_id", "original_image", "face_id", "age", "gender"]
for file in annotations_files:
fold_name = os.path.basename(file).split(".")[0]
df = pd.read_csv(file, sep="\t", usecols=cols)
for index, row in df.iterrows():
face_id, img_name, user_id = row["face_id"], row["original_image"], row["user_id"]
aligned_face_path = f"faces/{user_id}/coarse_tilt_aligned_face.{face_id}.{img_name}"
age, gender = row["age"], row["gender"]
gender = gender.upper() if isinstance(gender, str) and gender != "u" else None
age = age if isinstance(age, str) else None
annotations_per_image[aligned_face_path] = {"age": age, "gender": gender, "fold": fold_name}
stat_per_fold[fold_name] += 1
print(f"Per fold images: {stat_per_fold}")
return annotations_per_image
def read_data(images_dir, annotations_files, data_dir) -> List[PictureInfo]:
dataset_pictures: List[PictureInfo] = []
all_images = get_all_files(images_dir)
annotations_per_file = read_adience_annotations(annotations_files)
total, missed = 0, 0
stat_per_gender: Dict[str, int] = defaultdict(int)
missed_gender, missed_age, missed_gender_and_age = 0, 0, 0
stat_per_ages: Dict[str, int] = defaultdict(int)
# final age classes: '0;2', "4;6", "8;12", "15;20", "25;32", "38;43", "48;53", "60;100"
age_map = {
"2": "(0, 2)",
"3": "(0, 2)",
"13": "(8, 12)",
"(8, 23)": "(8, 12)",
"22": "(15, 20)",
"23": "(25, 32)",
"29": "(25, 32)",
"(27, 32)": "(25, 32)",
"32": "(25, 32)",
"34": "(25, 32)",
"35": "(25, 32)",
"36": "(38, 43)",
"(38, 42)": "(38, 43)",
"(38, 48)": "(38, 43)",
"42": "(38, 43)",
"45": "(38, 43)",
"46": "(48, 53)",
"55": "(48, 53)",
"56": "(48, 53)",
"57": "(60, 100)",
"58": "(60, 100)",
}
for image_path in all_images:
total += 1
relative_path = image_path.replace(f"{data_dir}/", "")
if relative_path not in annotations_per_file:
missed += 1
print("Can not find annotation for ", relative_path)
else:
annot = annotations_per_file[relative_path]
age, gender = annot["age"], annot["gender"]
if gender is None and age is not None:
missed_gender += 1
elif age is None and gender is not None:
missed_age += 1
elif gender is None and age is None:
missed_gender_and_age += 1
# skip such image
continue
if gender is not None:
stat_per_gender[gender] += 1
if age is not None:
age = age_map[age] if age in age_map else age
stat_per_ages[age] += 1
dataset_pictures.append(PictureInfo(image_path, age, gender))
print(f"Missed annots for images: {missed}/{total}")
print(f"Missed genders: {missed_gender}")
print(f"Missed ages: {missed_age}")
print(f"Missed ages and gender: {missed_gender_and_age}")
print(f"\nPer gender images: {stat_per_gender}")
ages = list(stat_per_ages.keys())
print(f"Per ages categories ({len(ages)} cats) :")
ages = sorted(ages, key=lambda x: int(x.split("(")[-1].split(",")[0].strip()))
for age in ages:
print(f"Age: {age} Count: {stat_per_ages[age]}")
return dataset_pictures
def main(faces_dir: str, annotations: List[str], data_dir: str, detector_cfg: dict = None):
"""
Generate a .txt annotation file with columns:
["img_name", "age", "gender",
"face_x0", "face_y0", "face_x1", "face_y1",
"person_x0", "person_y0", "person_x1", "person_y1"]
All person bboxes here will be set to [-1, -1, -1, -1]
If detector_cfg is set, for each face bbox will be refined using detector.
Also, other detected faces wil be written to txt file (needed for further preprocessing)
"""
# out directory for annotations
out_dir = os.path.join(data_dir, "annotations")
os.makedirs(out_dir, exist_ok=True)
# load annotations
images: List[PictureInfo] = read_data(faces_dir, annotations, data_dir)
if detector_cfg:
# detect faces with yolo detector
faces_not_found, images_with_other_faces = 0, 0
other_faces: List[PictureInfo] = []
detector_weights, device = detector_cfg["weights"], detector_cfg["device"]
detector = Detector(detector_weights, device, verbose=False, conf_thresh=0.1, iou_thresh=0.2)
for image_info in tqdm.tqdm(images, desc="Detecting faces: "):
cv_im = cv2.imread(image_info.image_path)
im_h, im_w = cv_im.shape[:2]
detected_objects: PersonAndFaceResult = detector.predict(cv_im)
main_bbox, other_bboxes_inds = get_main_face(detected_objects)
if main_bbox is None:
# use a full image as face bbox
faces_not_found += 1
image_info.bbox = [0, 0, im_w, im_h]
else:
image_info.bbox = main_bbox
if len(other_bboxes_inds):
images_with_other_faces += 1
additional_faces = get_additional_bboxes(detected_objects, other_bboxes_inds, image_info.image_path)
other_faces.extend(additional_faces)
print(f"Faces not detected: {faces_not_found}/{len(images)}")
print(f"Images with other faces: {images_with_other_faces}/{len(images)}")
print(f"Other faces: {len(other_faces)}")
images = images + other_faces
else:
# use a full image as face bbox
for image_info in tqdm.tqdm(images, desc="Collect face bboxes: "):
cv_im = cv2.imread(image_info.image_path)
im_h, im_w = cv_im.shape[:2]
image_info.bbox = [0, 0, im_w, im_h] # xyxy
save_annotations(images, faces_dir, out_file=os.path.join(out_dir, "adience_annotations.csv"))
def get_parser():
parser = argparse.ArgumentParser(description="Adience")
parser.add_argument(
"--dataset_path",
default="data/adience",
type=str,
required=True,
help="path to dataset with faces/ and fold_{i}_data.txt files",
)
parser.add_argument(
"--detector_weights", default=None, type=str, required=False, help="path to face and person detector"
)
parser.add_argument("--device", default="cuda:0", type=str, required=False, help="device to inference detector")
return parser
if __name__ == "__main__":
parser = get_parser()
args = parser.parse_args()
data_dir = args.dataset_path
faces_dir = os.path.join(data_dir, "faces")
if data_dir[-1] == "/":
data_dir = data_dir[:-1]
annotations = [
os.path.join(data_dir, "fold_0_data.txt"),
os.path.join(data_dir, "fold_1_data.txt"),
os.path.join(data_dir, "fold_2_data.txt"),
os.path.join(data_dir, "fold_3_data.txt"),
os.path.join(data_dir, "fold_4_data.txt"),
]
detector_cfg: Optional[Dict[str, str]] = None
if args.detector_weights is not None:
detector_cfg = {"weights": args.detector_weights, "device": "cuda:0"}
main(faces_dir, annotations, data_dir, detector_cfg)