|
import gradio as gr |
|
import torch |
|
from transformers import AutoTokenizer, AutoModel |
|
|
|
def get_embeddings(text): |
|
tokenizer = AutoTokenizer.from_pretrained("GroNLP/bert-base-dutch-cased") |
|
model = AutoModel.from_pretrained("GroNLP/bert-base-dutch-cased", output_hidden_states=True) |
|
sent = str(text) |
|
encoded = tokenizer.encode_plus(sent, return_tensors="pt") |
|
with torch.no_grad(): |
|
output = model(**encoded) |
|
|
|
states = output.hidden_states |
|
return states |
|
|
|
iface = gr.Interface(fn=get_embeddings,inputs="text",outputs="text") |
|
iface.launch() |