|
from pathlib import Path |
|
|
|
import torch |
|
from peft import PeftModel |
|
from transformers import is_torch_xpu_available |
|
|
|
import modules.shared as shared |
|
from modules.logging_colors import logger |
|
from modules.models import reload_model |
|
|
|
|
|
def add_lora_to_model(lora_names): |
|
if 'GPTQForCausalLM' in shared.model.__class__.__name__ or shared.args.loader == 'AutoGPTQ': |
|
add_lora_autogptq(lora_names) |
|
elif shared.model.__class__.__name__ in ['ExllamaModel', 'ExllamaHF'] or shared.args.loader == 'ExLlama': |
|
add_lora_exllama(lora_names) |
|
elif shared.model.__class__.__name__ in ['Exllamav2Model', 'Exllamav2HF'] or shared.args.loader == ['ExLlamav2', 'ExLlamav2_HF']: |
|
add_lora_exllamav2(lora_names) |
|
else: |
|
add_lora_transformers(lora_names) |
|
|
|
|
|
def get_lora_path(lora_name): |
|
p = Path(lora_name) |
|
if p.exists(): |
|
lora_name = p.parts[-1] |
|
|
|
return Path(f"{shared.args.lora_dir}/{lora_name}") |
|
|
|
|
|
def add_lora_exllama(lora_names): |
|
|
|
try: |
|
from exllama.lora import ExLlamaLora |
|
except: |
|
try: |
|
from repositories.exllama.lora import ExLlamaLora |
|
except: |
|
logger.error("Could not find the file repositories/exllama/lora.py. Make sure that exllama is cloned inside repositories/ and is up to date.") |
|
return |
|
|
|
if len(lora_names) == 0: |
|
if shared.model.__class__.__name__ == 'ExllamaModel': |
|
shared.model.generator.lora = None |
|
else: |
|
shared.model.lora = None |
|
|
|
shared.lora_names = [] |
|
return |
|
else: |
|
if len(lora_names) > 1: |
|
logger.warning('ExLlama can only work with 1 LoRA at the moment. Only the first one in the list will be loaded.') |
|
|
|
lora_path = get_lora_path(lora_names[0]) |
|
lora_config_path = lora_path / "adapter_config.json" |
|
for file_name in ["adapter_model.safetensors", "adapter_model.bin"]: |
|
file_path = lora_path / file_name |
|
if file_path.is_file(): |
|
lora_adapter_path = file_path |
|
|
|
logger.info("Applying the following LoRAs to {}: {}".format(shared.model_name, ', '.join([lora_names[0]]))) |
|
if shared.model.__class__.__name__ == 'ExllamaModel': |
|
lora = ExLlamaLora(shared.model.model, str(lora_config_path), str(lora_adapter_path)) |
|
shared.model.generator.lora = lora |
|
else: |
|
lora = ExLlamaLora(shared.model.ex_model, str(lora_config_path), str(lora_adapter_path)) |
|
shared.model.lora = lora |
|
|
|
shared.lora_names = [lora_names[0]] |
|
return |
|
|
|
|
|
def add_lora_exllamav2(lora_names): |
|
|
|
from exllamav2 import ExLlamaV2Lora |
|
|
|
if isinstance(shared.model.loras, list): |
|
for lora in shared.model.loras: |
|
lora.unload() |
|
|
|
if len(lora_names) > 0: |
|
logger.info("Applying the following LoRAs to {}: {}".format(shared.model_name, ', '.join(lora_names))) |
|
shared.model.loras = [] |
|
for lora_name in lora_names: |
|
lora_path = get_lora_path(lora_name) |
|
if shared.model.__class__.__name__ == 'Exllamav2Model': |
|
lora = ExLlamaV2Lora.from_directory(shared.model.model, str(lora_path)) |
|
else: |
|
lora = ExLlamaV2Lora.from_directory(shared.model.ex_model, str(lora_path)) |
|
|
|
shared.model.loras.append(lora) |
|
|
|
shared.lora_names = lora_names |
|
else: |
|
shared.lora_names = [] |
|
shared.model.loras = None |
|
|
|
|
|
def add_lora_autogptq(lora_names): |
|
''' |
|
Adapted from https://github.com/Ph0rk0z/text-generation-webui-testing |
|
''' |
|
|
|
try: |
|
from auto_gptq import get_gptq_peft_model |
|
from auto_gptq.utils.peft_utils import GPTQLoraConfig |
|
except: |
|
logger.error("This version of AutoGPTQ does not support LoRA. You need to install from source or wait for a new release.") |
|
return |
|
|
|
if len(lora_names) == 0: |
|
reload_model() |
|
|
|
shared.lora_names = [] |
|
return |
|
else: |
|
if len(lora_names) > 1: |
|
logger.warning('AutoGPTQ can only work with 1 LoRA at the moment. Only the first one in the list will be loaded.') |
|
if not shared.args.no_inject_fused_attention: |
|
logger.warning('Fused Atttention + AutoGPTQ may break Lora loading. Disable it.') |
|
|
|
peft_config = GPTQLoraConfig( |
|
inference_mode=True, |
|
) |
|
|
|
lora_path = get_lora_path(lora_names[0]) |
|
logger.info("Applying the following LoRAs to {}: {}".format(shared.model_name, ', '.join([lora_names[0]]))) |
|
shared.model = get_gptq_peft_model(shared.model, peft_config, lora_path) |
|
shared.lora_names = [lora_names[0]] |
|
return |
|
|
|
|
|
def add_lora_transformers(lora_names): |
|
prior_set = set(shared.lora_names) |
|
added_set = set(lora_names) - prior_set |
|
removed_set = prior_set - set(lora_names) |
|
|
|
|
|
if len(added_set) == 0 and len(removed_set) == 0: |
|
return |
|
|
|
|
|
if len(removed_set) == 0 and len(prior_set) > 0 and "__merged" not in shared.model.peft_config.keys(): |
|
logger.info(f"Adding the LoRA(s) named {added_set} to the model") |
|
for lora in added_set: |
|
shared.model.load_adapter(get_lora_path(lora), lora) |
|
|
|
if len(lora_names) > 1: |
|
merge_loras() |
|
|
|
shared.lora_names = lora_names |
|
return |
|
|
|
|
|
if len(removed_set) > 0: |
|
shared.model = shared.model.unload() |
|
|
|
if len(lora_names) > 0: |
|
params = {} |
|
if not shared.args.cpu: |
|
if shared.args.load_in_4bit or shared.args.load_in_8bit: |
|
params['peft_type'] = shared.model.dtype |
|
else: |
|
params['dtype'] = shared.model.dtype |
|
if hasattr(shared.model, "hf_device_map"): |
|
params['device_map'] = {"base_model.model." + k: v for k, v in shared.model.hf_device_map.items()} |
|
|
|
logger.info("Applying the following LoRAs to {}: {}".format(shared.model_name, ', '.join(lora_names))) |
|
shared.model = PeftModel.from_pretrained(shared.model, get_lora_path(lora_names[0]), adapter_name=lora_names[0], **params) |
|
for lora in lora_names[1:]: |
|
shared.model.load_adapter(get_lora_path(lora), lora) |
|
|
|
if len(lora_names) > 1: |
|
merge_loras() |
|
|
|
if not shared.args.load_in_8bit and not shared.args.cpu: |
|
shared.model.half() |
|
if not hasattr(shared.model, "hf_device_map"): |
|
if torch.backends.mps.is_available(): |
|
device = torch.device('mps') |
|
shared.model = shared.model.to(device) |
|
elif is_torch_xpu_available(): |
|
device = torch.device("xpu:0") |
|
shared.model = shared.model.to(device) |
|
else: |
|
shared.model = shared.model.cuda() |
|
|
|
shared.lora_names = lora_names |
|
|
|
|
|
def merge_loras(): |
|
if len(list({shared.model.peft_config[adapter].r for adapter in shared.model.peft_config.keys()})) > 1: |
|
logger.warning("The loaded LoRAs cannot be merged, as they have dissimilar ranks. Only the first one will be active.") |
|
return |
|
|
|
shared.model.add_weighted_adapter(shared.lora_names, [1] * len(shared.lora_names), "__merged") |
|
shared.model.set_adapter("__merged") |
|
|