|
import gc |
|
import traceback |
|
from queue import Queue |
|
from threading import Thread |
|
|
|
import torch |
|
import transformers |
|
from transformers import is_torch_xpu_available |
|
|
|
import modules.shared as shared |
|
|
|
|
|
class _StopEverythingStoppingCriteria(transformers.StoppingCriteria): |
|
def __init__(self): |
|
transformers.StoppingCriteria.__init__(self) |
|
|
|
def __call__(self, input_ids: torch.LongTensor, _scores: torch.FloatTensor) -> bool: |
|
return shared.stop_everything |
|
|
|
|
|
class Stream(transformers.StoppingCriteria): |
|
def __init__(self, callback_func=None): |
|
self.callback_func = callback_func |
|
|
|
def __call__(self, input_ids, scores) -> bool: |
|
if self.callback_func is not None: |
|
self.callback_func(input_ids[0]) |
|
|
|
return False |
|
|
|
|
|
class Iteratorize: |
|
|
|
""" |
|
Transforms a function that takes a callback |
|
into a lazy iterator (generator). |
|
|
|
Adapted from: https://stackoverflow.com/a/9969000 |
|
""" |
|
|
|
def __init__(self, func, args=None, kwargs=None, callback=None): |
|
self.mfunc = func |
|
self.c_callback = callback |
|
self.q = Queue() |
|
self.sentinel = object() |
|
self.args = args or [] |
|
self.kwargs = kwargs or {} |
|
self.stop_now = False |
|
|
|
def _callback(val): |
|
if self.stop_now or shared.stop_everything: |
|
raise ValueError |
|
self.q.put(val) |
|
|
|
def gentask(): |
|
try: |
|
ret = self.mfunc(callback=_callback, *args, **self.kwargs) |
|
except ValueError: |
|
pass |
|
except: |
|
traceback.print_exc() |
|
pass |
|
|
|
clear_torch_cache() |
|
self.q.put(self.sentinel) |
|
if self.c_callback: |
|
self.c_callback(ret) |
|
|
|
self.thread = Thread(target=gentask) |
|
self.thread.start() |
|
|
|
def __iter__(self): |
|
return self |
|
|
|
def __next__(self): |
|
obj = self.q.get(True, None) |
|
if obj is self.sentinel: |
|
raise StopIteration |
|
else: |
|
return obj |
|
|
|
def __del__(self): |
|
clear_torch_cache() |
|
|
|
def __enter__(self): |
|
return self |
|
|
|
def __exit__(self, exc_type, exc_val, exc_tb): |
|
self.stop_now = True |
|
clear_torch_cache() |
|
|
|
|
|
def clear_torch_cache(): |
|
gc.collect() |
|
if not shared.args.cpu: |
|
if is_torch_xpu_available(): |
|
torch.xpu.empty_cache() |
|
else: |
|
torch.cuda.empty_cache() |
|
|