|
from pathlib import Path |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import version as torch_version |
|
|
|
from modules import shared |
|
from modules.logging_colors import logger |
|
from modules.models import clear_torch_cache |
|
from modules.text_generation import get_max_prompt_length |
|
|
|
try: |
|
from exllama.generator import ExLlamaGenerator |
|
from exllama.model import ExLlama, ExLlamaCache, ExLlamaConfig |
|
from exllama.tokenizer import ExLlamaTokenizer |
|
except: |
|
logger.warning('exllama module failed to import. Will attempt to import from repositories/.') |
|
try: |
|
from modules.relative_imports import RelativeImport |
|
|
|
with RelativeImport("repositories/exllama"): |
|
from generator import ExLlamaGenerator |
|
from model import ExLlama, ExLlamaCache, ExLlamaConfig |
|
from tokenizer import ExLlamaTokenizer |
|
except: |
|
logger.error( |
|
"Could not find repositories/exllama. Please ensure that exllama" |
|
" (https://github.com/turboderp/exllama) is cloned inside repositories/ and is up to date." |
|
) |
|
raise |
|
|
|
|
|
class ExllamaModel: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def from_pretrained(self, path_to_model): |
|
|
|
path_to_model = Path(f'{shared.args.model_dir}') / Path(path_to_model) |
|
tokenizer_model_path = path_to_model / "tokenizer.model" |
|
model_config_path = path_to_model / "config.json" |
|
|
|
|
|
model_path = None |
|
for ext in ['.safetensors', '.pt', '.bin']: |
|
found = list(path_to_model.glob(f"*{ext}")) |
|
if len(found) > 0: |
|
if len(found) > 1: |
|
logger.warning(f'More than one {ext} model has been found. The last one will be selected. It could be wrong.') |
|
|
|
model_path = found[-1] |
|
break |
|
|
|
config = ExLlamaConfig(str(model_config_path)) |
|
config.model_path = str(model_path) |
|
config.max_seq_len = shared.args.max_seq_len |
|
config.compress_pos_emb = shared.args.compress_pos_emb |
|
if shared.args.gpu_split: |
|
config.set_auto_map(shared.args.gpu_split) |
|
config.gpu_peer_fix = True |
|
|
|
if shared.args.alpha_value > 1 and shared.args.rope_freq_base == 0: |
|
config.alpha_value = shared.args.alpha_value |
|
config.calculate_rotary_embedding_base() |
|
elif shared.args.rope_freq_base > 0: |
|
config.rotary_embedding_base = shared.args.rope_freq_base |
|
|
|
if torch_version.hip: |
|
config.rmsnorm_no_half2 = True |
|
config.rope_no_half2 = True |
|
config.matmul_no_half2 = True |
|
config.silu_no_half2 = True |
|
|
|
model = ExLlama(config) |
|
tokenizer = ExLlamaTokenizer(str(tokenizer_model_path)) |
|
cache = ExLlamaCache(model) |
|
generator = ExLlamaGenerator(model, tokenizer, cache) |
|
|
|
result = self() |
|
result.config = config |
|
result.model = model |
|
result.cache = cache |
|
result.tokenizer = tokenizer |
|
result.generator = generator |
|
return result, result |
|
|
|
def encode(self, string, **kwargs): |
|
return self.tokenizer.encode(string, max_seq_len=self.model.config.max_seq_len, add_bos=True) |
|
|
|
def decode(self, ids, **kwargs): |
|
if isinstance(ids, list): |
|
ids = torch.tensor([ids]) |
|
elif isinstance(ids, torch.Tensor) and ids.numel() == 1: |
|
ids = ids.view(1, -1) |
|
|
|
return self.tokenizer.decode(ids)[0] |
|
|
|
def get_logits(self, token_ids, **kwargs): |
|
self.cache.current_seq_len = 0 |
|
if token_ids.shape[-1] > 1: |
|
self.model.forward(token_ids[:, :-1], self.cache, input_mask=None, preprocess_only=True) |
|
|
|
return self.model.forward(token_ids[:, -1:], self.cache, **kwargs).float().cpu() |
|
|
|
def generate_with_streaming(self, prompt, state): |
|
|
|
|
|
if state['guidance_scale'] == 1: |
|
if self.cache.batch_size == 2: |
|
del self.cache |
|
clear_torch_cache() |
|
self.cache = ExLlamaCache(self.model) |
|
self.generator = ExLlamaGenerator(self.model, self.tokenizer, self.cache) |
|
else: |
|
if self.cache.batch_size == 1: |
|
del self.cache |
|
clear_torch_cache() |
|
self.cache = ExLlamaCache(self.model, batch_size=2) |
|
self.generator = ExLlamaGenerator(self.model, self.tokenizer, self.cache) |
|
|
|
self.generator.settings.temperature = state['temperature'] |
|
self.generator.settings.top_p = state['top_p'] |
|
self.generator.settings.top_k = state['top_k'] |
|
self.generator.settings.typical = state['typical_p'] |
|
self.generator.settings.token_repetition_penalty_max = state['repetition_penalty'] |
|
self.generator.settings.token_repetition_penalty_sustain = -1 if state['repetition_penalty_range'] <= 0 else state['repetition_penalty_range'] |
|
if state['ban_eos_token']: |
|
self.generator.disallow_tokens([self.tokenizer.eos_token_id]) |
|
else: |
|
self.generator.disallow_tokens(None) |
|
|
|
if state['custom_token_bans']: |
|
to_ban = [int(x) for x in state['custom_token_bans'].split(',')] |
|
if len(to_ban) > 0: |
|
self.generator.disallow_tokens(to_ban) |
|
|
|
|
|
if state['guidance_scale'] == 1: |
|
self.generator.end_beam_search() |
|
|
|
|
|
ids = self.generator.tokenizer.encode(prompt, max_seq_len=self.model.config.max_seq_len) |
|
if state['add_bos_token']: |
|
ids = torch.cat( |
|
[torch.tensor([[self.tokenizer.bos_token_id]]).to(ids.device), |
|
ids], dim=1 |
|
).to(torch.int64) |
|
ids = ids[:, -get_max_prompt_length(state):] |
|
if state['auto_max_new_tokens']: |
|
max_new_tokens = state['truncation_length'] - ids.shape[-1] |
|
else: |
|
max_new_tokens = state['max_new_tokens'] |
|
|
|
self.generator.gen_begin_reuse(ids) |
|
initial_len = self.generator.sequence[0].shape[0] |
|
has_leading_space = False |
|
|
|
for i in range(max_new_tokens): |
|
token = self.generator.gen_single_token() |
|
if i == 0 and self.generator.tokenizer.tokenizer.IdToPiece(int(token)).startswith('▁'): |
|
has_leading_space = True |
|
|
|
decoded_text = self.generator.tokenizer.decode(self.generator.sequence[0][initial_len:]) |
|
if has_leading_space: |
|
decoded_text = ' ' + decoded_text |
|
|
|
|
|
if chr(0xfffd) in decoded_text: |
|
is_last = i == max_new_tokens - 1 |
|
is_stopping = token.item() == self.generator.tokenizer.eos_token_id or shared.stop_everything |
|
|
|
if not (is_last or is_stopping): |
|
continue |
|
|
|
if token.item() == self.generator.tokenizer.eos_token_id or shared.stop_everything: |
|
break |
|
|
|
yield decoded_text |
|
|
|
|
|
|
|
else: |
|
alpha = state['guidance_scale'] |
|
prompts = [prompt, state['negative_prompt'] or ''] |
|
|
|
ids, mask = self.tokenizer.encode( |
|
prompts, |
|
return_mask=True, |
|
max_seq_len=self.model.config.max_seq_len, |
|
add_bos=state['add_bos_token'] |
|
) |
|
if state['auto_max_new_tokens']: |
|
max_new_tokens = state['truncation_length'] - ids[0].shape[-1] |
|
else: |
|
max_new_tokens = state['max_new_tokens'] |
|
|
|
self.generator.gen_begin(ids, mask=mask) |
|
initial_len = self.generator.sequence[0].shape[0] |
|
has_leading_space = False |
|
|
|
for i in range(max_new_tokens): |
|
logits = self.model.forward(self.generator.sequence[:, -1:], self.cache, input_mask=mask) |
|
self.generator.apply_rep_penalty(logits) |
|
|
|
logits = F.log_softmax(logits, dim=-1) |
|
logits_mixed = alpha * logits[0] + (1 - alpha) * logits[1] |
|
|
|
token, _ = self.generator.sample_current(logits_mixed) |
|
if i == 0 and self.generator.tokenizer.tokenizer.IdToPiece(int(token)).startswith('▁'): |
|
has_leading_space = True |
|
|
|
decoded_text = self.generator.tokenizer.decode(self.generator.sequence[0][initial_len:]) |
|
if has_leading_space: |
|
decoded_text = ' ' + decoded_text |
|
|
|
|
|
if chr(0xfffd) in decoded_text: |
|
is_last = i == max_new_tokens - 1 |
|
is_stopping = token.item() == self.tokenizer.eos_token_id or shared.stop_everything |
|
|
|
if not (is_last or is_stopping): |
|
continue |
|
|
|
yield decoded_text |
|
if token.item() == self.tokenizer.eos_token_id or shared.stop_everything: |
|
break |
|
|
|
batch_token = token.repeat(2, 1) |
|
self.generator.gen_accept_token(batch_token) |
|
|
|
def generate(self, prompt, state): |
|
output = '' |
|
for output in self.generate_with_streaming(prompt, state): |
|
pass |
|
|
|
return output |
|
|