|
import os |
|
import traceback |
|
from pathlib import Path |
|
from typing import Any, Dict, Optional, Union |
|
|
|
import torch |
|
from exllamav2 import ( |
|
ExLlamaV2, |
|
ExLlamaV2Cache, |
|
ExLlamaV2Cache_8bit, |
|
ExLlamaV2Config |
|
) |
|
from torch.nn import CrossEntropyLoss |
|
from transformers import GenerationConfig, PretrainedConfig, PreTrainedModel |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
|
|
from modules import shared |
|
from modules.logging_colors import logger |
|
|
|
try: |
|
import flash_attn |
|
except ModuleNotFoundError: |
|
logger.warning( |
|
'You are running ExLlamaV2 without flash-attention. This will cause the VRAM usage ' |
|
'to be a lot higher than it could be.\n' |
|
'Try installing flash-attention following the instructions here: ' |
|
'https://github.com/Dao-AILab/flash-attention#installation-and-features' |
|
) |
|
pass |
|
except Exception: |
|
logger.warning('Failed to load flash-attention due to the following error:\n') |
|
traceback.print_exc() |
|
|
|
|
|
class Exllamav2HF(PreTrainedModel): |
|
def __init__(self, config: ExLlamaV2Config): |
|
super().__init__(PretrainedConfig()) |
|
self.ex_config = config |
|
self.ex_model = ExLlamaV2(config) |
|
split = None |
|
if shared.args.gpu_split: |
|
split = [float(alloc) for alloc in shared.args.gpu_split.split(",")] |
|
|
|
self.ex_model.load(split) |
|
self.generation_config = GenerationConfig() |
|
self.loras = None |
|
|
|
if shared.args.cache_8bit: |
|
self.ex_cache = ExLlamaV2Cache_8bit(self.ex_model) |
|
else: |
|
self.ex_cache = ExLlamaV2Cache(self.ex_model) |
|
|
|
self.past_seq = None |
|
if shared.args.cfg_cache: |
|
if shared.args.cache_8bit: |
|
self.ex_cache_negative = ExLlamaV2Cache_8bit(self.ex_model) |
|
else: |
|
self.ex_cache_negative = ExLlamaV2Cache(self.ex_model) |
|
|
|
self.past_seq_negative = None |
|
|
|
def _validate_model_class(self): |
|
pass |
|
|
|
def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]): |
|
pass |
|
|
|
def prepare_inputs_for_generation(self, input_ids, **kwargs): |
|
return {'input_ids': input_ids, **kwargs} |
|
|
|
@property |
|
def device(self) -> torch.device: |
|
return torch.device(0) |
|
|
|
def __call__(self, *args, **kwargs): |
|
use_cache = kwargs.get('use_cache', True) |
|
labels = kwargs.get('labels', None) |
|
past_key_values = kwargs.get('past_key_values', None) |
|
|
|
if len(args) > 0: |
|
if not shared.args.cfg_cache: |
|
logger.error("Please enable the cfg-cache option to use CFG with ExLlamav2_HF.") |
|
return |
|
|
|
input_ids = args[0] |
|
is_negative = True |
|
past_seq = self.past_seq_negative |
|
ex_cache = self.ex_cache_negative |
|
else: |
|
input_ids = kwargs['input_ids'] |
|
is_negative = False |
|
past_seq = self.past_seq |
|
ex_cache = self.ex_cache |
|
|
|
seq = input_ids[0].tolist() |
|
if is_negative and past_key_values is not None: |
|
seq = past_key_values + seq |
|
|
|
seq_tensor = torch.tensor(seq) |
|
reset = True |
|
|
|
|
|
if labels is None: |
|
if past_seq is not None: |
|
min_length = min(past_seq.shape[0], seq_tensor.shape[0]) |
|
indices = torch.nonzero(~torch.eq(past_seq[:min_length], seq_tensor[:min_length])) |
|
if len(indices) > 0: |
|
longest_prefix = indices[0].item() |
|
else: |
|
longest_prefix = min_length |
|
|
|
if longest_prefix > 0: |
|
reset = False |
|
ex_cache.current_seq_len = longest_prefix |
|
if len(seq_tensor) - longest_prefix > 1: |
|
self.ex_model.forward(seq_tensor[longest_prefix:-1].view(1, -1), ex_cache, preprocess_only=True, loras=self.loras) |
|
elif len(seq_tensor) == longest_prefix: |
|
|
|
|
|
ex_cache.current_seq_len -= 1 |
|
|
|
if reset: |
|
ex_cache.current_seq_len = 0 |
|
if len(seq_tensor) > 1: |
|
self.ex_model.forward(seq_tensor[:-1].view(1, -1), ex_cache, preprocess_only=True, loras=self.loras) |
|
|
|
logits = self.ex_model.forward(seq_tensor[-1:].view(1, -1), ex_cache, loras=self.loras).to(input_ids.device).float() |
|
else: |
|
ex_cache.current_seq_len = 0 |
|
logits = self.ex_model.forward(seq_tensor.view(1, -1), ex_cache, last_id_only=False, loras=self.loras).float() |
|
|
|
if is_negative: |
|
self.past_seq_negative = seq_tensor |
|
else: |
|
self.past_seq = seq_tensor |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, logits.shape[-1]) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
return CausalLMOutputWithPast(logits=logits, past_key_values=seq if use_cache else None, loss=loss) |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs): |
|
assert len(model_args) == 0 and len(kwargs) == 0, "extra args is currently not supported" |
|
if isinstance(pretrained_model_name_or_path, str): |
|
pretrained_model_name_or_path = Path(pretrained_model_name_or_path) |
|
|
|
pretrained_model_name_or_path = Path(f'{shared.args.model_dir}') / Path(pretrained_model_name_or_path) |
|
|
|
config = ExLlamaV2Config() |
|
config.model_dir = str(pretrained_model_name_or_path) |
|
config.prepare() |
|
|
|
config.max_seq_len = shared.args.max_seq_len |
|
config.scale_pos_emb = shared.args.compress_pos_emb |
|
config.scale_alpha_value = shared.args.alpha_value |
|
config.no_flash_attn = shared.args.no_flash_attn |
|
config.num_experts_per_token = int(shared.args.num_experts_per_token) |
|
|
|
return Exllamav2HF(config) |
|
|