Spaces:
Runtime error
Runtime error
File size: 8,184 Bytes
628dd10 99caaea 2335e48 99caaea 83798fc f873689 99caaea 2335e48 99caaea a908ef9 99caaea 1a67055 99caaea 4a10f8f f873689 4a10f8f 99caaea ea8a830 99caaea 23aa474 ea8a830 23aa474 ea8a830 23aa474 ea8a830 23aa474 4918b4b 23aa474 ea8a830 4918b4b ea8a830 23aa474 99caaea f873689 99caaea f873689 2a6b233 f873689 99caaea 4a10f8f 49bbcba 4a10f8f a414223 ea8a830 a414223 ea8a830 a414223 49bbcba ea8a830 49bbcba ea8a830 49bbcba ea8a830 49bbcba ea8a830 49bbcba ea8a830 49bbcba a414223 49bbcba 4a10f8f 99caaea 4a10f8f 99caaea ea8a830 99caaea 23aa474 ea8a830 23aa474 4918b4b 23aa474 ea8a830 4918b4b 23aa474 99caaea 4a10f8f 99caaea ea8a830 4a10f8f 99caaea ea8a830 99caaea ea8a830 99caaea ea8a830 4a10f8f ea8a830 4a10f8f ea8a830 99caaea 4a10f8f 99caaea 4a10f8f f873689 4a10f8f ea8a830 4a10f8f 99caaea f682c4d 99caaea f873689 99caaea 2a6b233 99caaea 4a10f8f 99caaea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import gradio as gr
from diffusers import StableDiffusionPipeline
import torch
import io
from PIL import Image
import os
from cryptography.fernet import Fernet
from google.cloud import storage
import pinecone
import json
import uuid
import pandas as pd
# decrypt Storage Cloud credentials
fernet = Fernet(os.environ['DECRYPTION_KEY'])
with open('cloud-storage.encrypted', 'rb') as fp:
encrypted = fp.read()
creds = json.loads(fernet.decrypt(encrypted).decode())
# then save creds to file
with open('cloud-storage.json', 'w', encoding='utf-8') as fp:
fp.write(json.dumps(creds, indent=4))
# connect to Cloud Storage
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = 'cloud-storage.json'
storage_client = storage.Client()
bucket = storage_client.get_bucket('hf-diffusion-images')
# get api key for pinecone auth
PINECONE_KEY = os.environ['PINECONE_KEY']
index_id = "hf-diffusion"
# init connection to pinecone
pinecone.init(
api_key=PINECONE_KEY,
environment="us-west1-gcp"
)
if index_id not in pinecone.list_indexes():
raise ValueError(f"Index '{index_id}' not found")
index = pinecone.Index(index_id)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using '{device}' device...")
# init all of the models and move them to a given GPU
pipe = StableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", use_auth_token=os.environ['HF_AUTH']
)
pipe.to(device)
missing_im = Image.open('missing.png')
threshold = 0.85
def encode_text(text: str):
text_inputs = pipe.tokenizer(
text, return_tensors='pt'
).to(device)
text_embeds = pipe.text_encoder(**text_inputs)
text_embeds = text_embeds.pooler_output.cpu().tolist()[0]
return text_embeds
def prompt_query(text: str):
print(f"Running prompt_query('{text}')")
embeds = encode_text(text)
try:
print("Try query pinecone")
xc = index.query(embeds, top_k=30, include_metadata=True)
print("query successful")
except Exception as e:
print(f"Error during query: {e}")
# reinitialize connection
print("Try reinitialize Pinecone connection")
pinecone.init(api_key=PINECONE_KEY, environment='us-west1-gcp')
index2 = pinecone.Index(index_id)
try:
print("Now try querying pinecone again")
xc = index2.query(embeds, top_k=30, include_metadata=True)
print("query successful")
except Exception as e:
raise ValueError(e)
prompts = [
match['metadata']['prompt'] for match in xc['matches']
]
scores = [round(match['score'], 2) for match in xc['matches']]
# deduplicate while preserving order
df = pd.DataFrame({'Similarity': scores, 'Prompt': prompts})
df = df.drop_duplicates(subset='Prompt', keep='first')
df = df[df['Prompt'].str.len() > 7].head()
return df
def diffuse(text: str):
# diffuse
out = pipe(text)
if any(out.nsfw_content_detected):
return {}
else:
_id = str(uuid.uuid4())
# add image to Cloud Storage
im = out.images[0]
im.save(f'{_id}.png', format='png')
added_gcp = False
# push to storage
try:
print("try push to Cloud Storage")
blob = bucket.blob(f'images/{_id}.png')
print("try upload_from_filename")
blob.upload_from_filename(f'{_id}.png')
added_gcp = True
# add embedding and metadata to Pinecone
embeds = encode_text(text)
meta = {
'prompt': text,
'image_url': f'images/{_id}.png'
}
try:
print("now try upsert to pinecone")
index.upsert([(_id, embeds, meta)])
print("upsert successful")
except Exception as e:
try:
print("hit exception, now trying to reinit Pinecone connection")
pinecone.init(api_key=PINECONE_KEY, environment='us-west1-gcp')
index2 = pinecone.Index(index_id)
print(f"reconnected to pinecone '{index_id}' index")
index2.upsert([(_id, embeds, meta)])
print("upsert successful")
except Exception as e:
print(f"PINECONE_ERROR: {e}")
except Exception as e:
print(f"ERROR: New image not uploaded due to error with {'Pinecone' if added_gcp else 'Cloud Storage'}")
# delete local file
os.remove(f'{_id}.png')
return out.images[0]
def get_image(url: str):
blob = bucket.blob(url).download_as_string()
blob_bytes = io.BytesIO(blob)
im = Image.open(blob_bytes)
return im
def test_image(_id, image):
try:
image.save('tmp.png')
return True
except OSError:
# delete corrupted file from pinecone and cloud
index.delete(ids=[_id])
bucket.blob(f"images/{_id}.png").delete()
print(f"DELETED '{_id}'")
return False
def prompt_image(text: str):
print(f"prompt_image('{text}')")
embeds = encode_text(text)
try:
print("try query pinecone")
xc = index.query(embeds, top_k=9, include_metadata=True)
except Exception as e:
print(f"Error during query: {e}")
# reinitialize connection
pinecone.init(api_key=PINECONE_KEY, environment='us-west1-gcp')
index2 = pinecone.Index(index_id)
try:
print("try query pinecone after reinit")
xc = index2.query(embeds, top_k=9, include_metadata=True)
except Exception as e:
raise ValueError(e)
image_urls = [
match['metadata']['image_url'] for match in xc['matches']
]
scores = [match['score'] for match in xc['matches']]
ids = [match['id'] for match in xc['matches']]
images = []
print("Begin looping through (ids, image_urls)")
for _id, image_url in zip(ids, image_urls):
try:
print("download_as_string from GCP")
blob = bucket.blob(image_url).download_as_string()
print("downloaded successfully")
blob_bytes = io.BytesIO(blob)
im = Image.open(blob_bytes)
print("image opened successfully")
if test_image(_id, im):
images.append(im)
print("image accessible")
else:
images.append(missing_im)
print("image NOT accessible")
except ValueError:
print(f"ValueError: '{image_url}'")
return images, scores
# __APP FUNCTIONS__
def set_suggestion(text: str):
return gr.TextArea.update(value=text[0])
def set_images(text: str):
images, scores = prompt_image(text)
match_found = False
for score in scores:
if score > threshold:
match_found = True
if match_found:
print("MATCH FOUND")
return gr.Gallery.update(value=images)
else:
print("NO MATCH FOUND")
diffuse(text)
print(f"diffusion for '{text}' complete")
images, scores = prompt_image(text)
return gr.Gallery.update(value=images)
# __CREATE APP__
demo = gr.Blocks()
with demo:
gr.Markdown(
"""
# Dream Cacher
"""
)
with gr.Row():
with gr.Column():
prompt = gr.TextArea(
value="A person surfing",
placeholder="Enter a prompt to dream about",
interactive=True
)
search = gr.Button(value="Search!")
suggestions = gr.Dataframe(
values=[],
headers=['Similarity', 'Prompt']
)
# event listener for change in prompt
prompt.change(
prompt_query, prompt, suggestions,
show_progress=False
)
# results column
with gr.Column():
pics = gr.Gallery()
pics.style(grid=3)
# search event listening
try:
search.click(set_images, prompt, pics)
except OSError:
print("OSError")
demo.launch() |