from huggingface_hub import InferenceClient
import gradio as gr
import os
import re
# Get secret (HF_TOKEN)
HF_TOKEN = os.environ.get("HF_TOKEN", None)
#HTML/CSS stuff
DESCRIPTION = """
Llama 3 Poem Analysis (Work-in-progress)
Copy-paste poem into textbox --> get Llama 3-generated commentary *hallucinations likely*
"""
LICENSE = """
---
Built with Meta Llama 3
"""
#Not being used currently; having trouble integrating as a gr.Textbox in the params to gr.ChatInterface framework (end)
PLACEHOLDER = """
"""
css = """
h1 {
text-align: center;
display: block;
}
"""
#Initialize Llama as model; using InferenceClient for speed
client = InferenceClient(
"meta-llama/Meta-Llama-3-8B-Instruct"
)
#Get few-shot samples from PoemAnalysisSamples.txt
with open("PoemAnalysisSamples.txt", 'r') as f:
sample_poems = f.read()
pairs = re.findall(r'(.*?)\s*(.*?)', sample_poems, re.DOTALL)
#System message to initialize poetry assistant
sys_message = """
Assistant provides detailed analysis of poems following the format of the few-shot samples given. Assistant uses the following poetic terms and concepts to describe poem entered by user: simile, metaphor, metonymy, imagery, synecdoche, meter, diction, end rhyme, internal rhyme, and slant rhyme."
"""
#Helper function for formatting
def format_prompt(message, history):
"""Formats the prompt for the LLM
Args:
message: current user text entry
history: conversation history tracked by Gradio
Returns:
prompt: formatted properly for inference
"""
#Start with system message in Llama 3 message format: https://llama.meta.com/docs/model-cards-and-prompt-formats/meta-llama-3/
prompt=f"<|begin_of_text|><|start_header_id|>system<|end_header_id|>{sys_message}<|eot_id|>"
#Unpack the user and assistant messages from few-shot samples
for poem, response in pairs:
prompt+=f"<|start_header_id|>user<|end_header_id|>{poem}<|eot_id|>"
prompt+=f"<|start_header_id|>assistant<|end_header_id|>{response}<|eot_id|>"
#Unpack the conversation history stored by Gradio
for user_prompt, bot_response in history:
prompt+=f"<|start_header_id|>user<|end_header_id|>{user_prompt}<|eot_id|>"
prompt+=f"<|start_header_id|>assistant<|end_header_id|>{bot_response}<|eot_id|>"
#Add new message
prompt+=f"<|begin_of_text|><|start_header_id|>user<|end_header_id|>{message}<|eot_id|><|begin_of_text|><|start_header_id|>assistant<|end_header_id|>"
return prompt
#Function to generate LLM response
def generate(
prompt, history, temperature=0.1, max_new_tokens=1024, top_p=0.95, repetition_penalty=1.0,
):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
stop_sequences=["<|eot_id|>"] #Llama 3 requires this stop token
)
formatted_prompt = format_prompt(prompt, history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True) #change last to True for debugging conversation history
output = ""
for response in stream:
output += response.token.text
yield output
return output
# Initialize sliders
additional_inputs=[
gr.Slider(
label="Temperature",
value=0.1,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=1024,
minimum=0,
maximum=4096,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
]
#Gradio UI
with gr.Blocks(css=css) as demo:
gr.ChatInterface(
fn=generate,
description=DESCRIPTION,
additional_inputs=additional_inputs
)
gr.Markdown(LICENSE)
demo.queue(concurrency_count=75, max_size=100).launch(debug=True)