from huggingface_hub import InferenceClient import gradio as gr import os import re # Get secret (HF_TOKEN) HF_TOKEN = os.environ.get("HF_TOKEN", None) #HTML/CSS stuff DESCRIPTION = """

Llama 3 Poem Analysis (Work-in-progress)

Copy-paste poem into textbox --> get Llama 3-generated commentary *hallucinations likely*

""" LICENSE = """

--- Built with Meta Llama 3 """ #Not being used currently; having trouble integrating as a gr.Textbox in the params to gr.ChatInterface framework (end) PLACEHOLDER = """

""" css = """ h1 { text-align: center; display: block; } """ #Initialize Llama as model; using InferenceClient for speed client = InferenceClient( "meta-llama/Meta-Llama-3-8B-Instruct" ) #Get few-shot samples from PoemAnalysisSamples.txt with open("PoemAnalysisSamples.txt", 'r') as f: sample_poems = f.read() pairs = re.findall(r'(.*?)\s*(.*?)', sample_poems, re.DOTALL) #System message to initialize poetry assistant sys_message = """ Assistant provides detailed analysis of poems following the format of the few-shot samples given. Assistant uses the following poetic terms and concepts to describe poem entered by user: simile, metaphor, metonymy, imagery, synecdoche, meter, diction, end rhyme, internal rhyme, and slant rhyme." """ #Helper function for formatting def format_prompt(message, history): """Formats the prompt for the LLM Args: message: current user text entry history: conversation history tracked by Gradio Returns: prompt: formatted properly for inference """ #Start with system message in Llama 3 message format: https://llama.meta.com/docs/model-cards-and-prompt-formats/meta-llama-3/ prompt=f"<|begin_of_text|><|start_header_id|>system<|end_header_id|>{sys_message}<|eot_id|>" #Unpack the user and assistant messages from few-shot samples for poem, response in pairs: prompt+=f"<|start_header_id|>user<|end_header_id|>{poem}<|eot_id|>" prompt+=f"<|start_header_id|>assistant<|end_header_id|>{response}<|eot_id|>" #Unpack the conversation history stored by Gradio for user_prompt, bot_response in history: prompt+=f"<|start_header_id|>user<|end_header_id|>{user_prompt}<|eot_id|>" prompt+=f"<|start_header_id|>assistant<|end_header_id|>{bot_response}<|eot_id|>" #Add new message prompt+=f"<|begin_of_text|><|start_header_id|>user<|end_header_id|>{message}<|eot_id|><|begin_of_text|><|start_header_id|>assistant<|end_header_id|>" return prompt #Function to generate LLM response def generate( prompt, history, temperature=0.1, max_new_tokens=1024, top_p=0.95, repetition_penalty=1.0, ): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, stop_sequences=["<|eot_id|>"] #Llama 3 requires this stop token ) formatted_prompt = format_prompt(prompt, history) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True) #change last to True for debugging conversation history output = "" for response in stream: output += response.token.text yield output return output # Initialize sliders additional_inputs=[ gr.Slider( label="Temperature", value=0.1, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ), gr.Slider( label="Max new tokens", value=1024, minimum=0, maximum=4096, step=64, interactive=True, info="The maximum numbers of new tokens", ), gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ), gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ) ] #Gradio UI with gr.Blocks(css=css) as demo: gr.ChatInterface( fn=generate, description=DESCRIPTION, additional_inputs=additional_inputs ) gr.Markdown(LICENSE) demo.queue(concurrency_count=75, max_size=100).launch(debug=True)