File size: 7,217 Bytes
00710e8
88b9835
67d69a3
632c209
ad85111
 
75f2ed4
 
 
 
57a96a1
ef58374
67d69a3
a84e446
 
 
75f2ed4
14fd49f
75f2ed4
ef58374
75f2ed4
 
 
00710e8
 
2eca929
 
d8b281a
2eca929
 
 
 
 
 
88b9835
59c9938
 
 
 
 
 
 
 
 
57ebd4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f04906e
59c9938
21eda87
396f6f7
67d69a3
59c9938
962b2f7
caf9141
57a96a1
75f2ed4
88b9835
 
67d69a3
f5c8b45
75f2ed4
b3ed5b1
f5c8b45
75f2ed4
 
 
88b9835
75f2ed4
 
962b2f7
 
1b9bef7
88db26e
 
962b2f7
 
 
 
75f2ed4
57ebd4f
14fd49f
75f2ed4
 
88b9835
 
 
14fd49f
57a96a1
9edbc68
75f2ed4
424869b
 
ab16048
2eca929
 
 
ab16048
 
 
 
 
 
 
 
 
 
f581e92
2eca929
ab16048
 
01dd5e7
2eca929
ab16048
2eca929
 
 
caf9141
f04906e
57a96a1
 
22696bb
 
411ad13
 
22696bb
 
 
57a96a1
 
 
 
 
411ad13
 
 
22696bb
411ad13
57a96a1
 
 
 
 
 
 
 
ab16048
2eca929
 
 
 
 
 
 
 
 
 
 
ab16048
 
1170823
 
 
 
ab16048
1170823
ab16048
de50edd
 
 
975300c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import os
import time
import datetime
from tqdm import tqdm

import spaces
import torch
import torch.optim as optim
import gradio as gr

from utils import preprocess_img, preprocess_img_from_path, postprocess_img
from vgg19 import VGG_19

if torch.cuda.is_available(): device = 'cuda'
elif torch.backends.mps.is_available(): device = 'mps'
else: device = 'cpu'
print('DEVICE:', device)
if device == 'cuda': print('CUDA DEVICE:', torch.cuda.get_device_name())

model = VGG_19().to(device)
for param in model.parameters():
    param.requires_grad = False

style_files = os.listdir('./style_images')
style_options = {' '.join(style_file.split('.')[0].split('_')): f'./style_images/{style_file}' for style_file in style_files}
optimal_settings = {
    'Starry Night': (100, True),
    'Lego Bricks': (100, False),
    'Mosaic': (100, False),
    'Oil Painting': (100, False),
    'Scream': (75, True),
    'Great Wave': (75, False),
    'Watercolor': (10, False),
}

cached_style_features = {}
for style_name, style_img_path in style_options.items():
    style_img_512 = preprocess_img_from_path(style_img_path, 512)[0].to(device)
    style_img_1024 = preprocess_img_from_path(style_img_path, 1024)[0].to(device)
    with torch.no_grad():
        style_features = (model(style_img_512), model(style_img_1024))
    cached_style_features[style_name] = style_features


def compute_loss(generated_features, content_features, style_features, alpha, beta):
    content_loss = 0
    style_loss = 0
    
    for generated_feature, content_feature, style_feature in zip(generated_features, content_features, style_features):
        batch_size, n_feature_maps, height, width = generated_feature.size()
        
        content_loss += (torch.mean((generated_feature - content_feature) ** 2))
        
        G = torch.mm((generated_feature.view(batch_size * n_feature_maps, height * width)), (generated_feature.view(batch_size * n_feature_maps, height * width)).t())
        A = torch.mm((style_feature.view(batch_size * n_feature_maps, height * width)), (style_feature.view(batch_size * n_feature_maps, height * width)).t())
        
        E_l = ((G - A) ** 2)
        w_l = 1/5
        style_loss += torch.mean(w_l * E_l)

    return alpha * content_loss + beta * style_loss

@spaces.GPU(duration=20)
def inference(content_image, style_name, style_strength, output_quality, progress=gr.Progress(track_tqdm=True)):
    yield None
    print('-'*15)
    print('DATETIME:', datetime.datetime.now())
    print('STYLE:', style_name)
    
    img_size = 1024 if output_quality else 512
    content_img, original_size = preprocess_img(content_image, img_size)
    content_img = content_img.to(device)
    
    print('CONTENT IMG SIZE:', original_size)
    print('STYLE STRENGTH:', style_strength)
    print('HIGH QUALITY:', output_quality)

    iters = 50
    lr = 0.001 + (0.099 / 99) * (style_strength - 1)
    alpha = 1
    beta = 1

    st = time.time()
    generated_img = content_img.clone().requires_grad_(True)
    optimizer = optim.Adam([generated_img], lr=lr)

    with torch.no_grad():
        content_features = model(content_img)
    if img_size == 512: style_features = cached_style_features[style_name][0]
    else: style_features = cached_style_features[style_name][1]
    
    for _ in tqdm(range(iters), desc='The magic is happening ✨'):
        optimizer.zero_grad()

        generated_features = model(generated_img)
        total_loss = compute_loss(generated_features, content_features, style_features, alpha, beta)

        total_loss.backward()
        optimizer.step()
    
    et = time.time()
    print('TIME TAKEN:', et-st)
    
    yield postprocess_img(generated_img, original_size)


def set_slider(value):
    return gr.update(value=value)

def update_settings(style):
    return optimal_settings.get(style, (50, True))

css = """
#container {
    margin: 0 auto;
    max-width: 550px;
}
"""

with gr.Blocks(css=css) as demo:
    gr.HTML("<h1 style='text-align: center; padding: 10px'>🖼️ Neural Style Transfer</h1>")
    with gr.Column(elem_id='container'):
        content_and_output = gr.Image(label='Content', show_label=False, type='pil', sources=['upload', 'webcam'], format='jpg', show_download_button=False)
        style_dropdown = gr.Radio(choices=list(style_options.keys()), label='Style', info='Note: Adjustments automatically optimize for different styles.', value='Starry Night', type='value')
        with gr.Accordion('Adjustments', open=False):
            with gr.Group():
                style_strength_slider = gr.Slider(label='Style Strength', minimum=1, maximum=100, step=1, value=50)
                
                with gr.Row():
                    low_button = gr.Button('Low', size='sm').click(fn=lambda: set_slider(10), outputs=[style_strength_slider])
                    medium_button = gr.Button('Medium', size='sm').click(fn=lambda: set_slider(50), outputs=[style_strength_slider])
                    high_button = gr.Button('High', size='sm').click(fn=lambda: set_slider(100), outputs=[style_strength_slider])
            with gr.Group():
                output_quality = gr.Checkbox(label='More Realistic', info='Note: If unchecked, the resulting image will have a more artistic flair.', value=True)
        
        submit_button = gr.Button('Submit', variant='primary')
        download_button = gr.DownloadButton(label='Download Image', visible=False)

        def save_image(img):
            filename = 'generated.jpg'
            img.save(filename)
            return filename
        
        submit_button.click(
            fn=inference, 
            inputs=[content_and_output, style_dropdown, style_strength_slider, output_quality], 
            outputs=[content_and_output]
        ).then(
            fn=save_image,
            inputs=[content_and_output],
            outputs=[download_button]
        ).then(
            fn=lambda: gr.update(visible=True),
            outputs=[download_button]
        )
        
        content_and_output.change(
            fn=lambda _: gr.update(visible=False),
            inputs=[content_and_output],
            outputs=[download_button]
        )
        
        style_dropdown.change(
            fn=lambda style: set_slider(update_settings(style)[0]), 
            inputs=[style_dropdown], 
            outputs=[style_strength_slider]
        )
        style_dropdown.change(
            fn=lambda style: gr.update(value=update_settings(style)[1]), 
            inputs=[style_dropdown], 
            outputs=[output_quality]
        )
        
        examples = gr.Examples(
            examples=[
                ['./content_images/TajMahal.jpg', 'Starry Night', *optimal_settings['Starry Night']],
                ['./content_images/GoldenRetriever.jpg', 'Lego Bricks', *optimal_settings['Lego Bricks']],
                ['./content_images/SeaTurtle.jpg', 'Oil Painting', *optimal_settings['Oil Painting']],
                ['./content_images/NYCSkyline.jpg', 'Scream', *optimal_settings['Scream']]
            ],
            inputs=[content_and_output, style_dropdown, style_strength_slider, output_quality]
        )

demo.queue = False
demo.config['queue'] = False
demo.launch(show_api=False)