Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,070 Bytes
88b9835 75f2ed4 632c209 ad85111 75f2ed4 a84e446 75f2ed4 88b9835 a84e446 88b9835 a84e446 88b9835 a84e446 1435716 88b9835 be360b3 3ef9484 21eda87 396f6f7 75f2ed4 88b9835 75f2ed4 3ef9484 75f2ed4 88b9835 75f2ed4 3ef9484 1435716 75f2ed4 88b9835 ff73241 9edbc68 75f2ed4 424869b 3ef9484 a84e446 1435716 d716e7a 3ef9484 1527fdb 3ef9484 424869b 3ef9484 5c261c3 1435716 5c261c3 1435716 3ef9484 5c261c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import time
from PIL import Image
from tqdm import tqdm
import spaces
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.models as models
import gradio as gr
if torch.cuda.is_available(): device = 'cuda'
elif torch.backends.mps.is_available(): device = 'mps'
else: device = 'cpu'
print('DEVICE:', device)
class VGG_19(nn.Module):
def __init__(self):
super(VGG_19, self).__init__()
self.model = models.vgg19(pretrained=True).features[:30]
for i, _ in enumerate(self.model):
if i in [4, 9, 18, 27]:
self.model[i] = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
def forward(self, x):
features = []
for i, layer in enumerate(self.model):
x = layer(x)
if i in [0, 5, 10, 19, 28]:
features.append(x)
return features
model = VGG_19().to(device)
for param in model.parameters():
param.requires_grad = False
def load_img(img: Image, img_size):
original_size = img.size
transform = transforms.Compose([
transforms.Resize((img_size, img_size)),
transforms.ToTensor()
])
img = transform(img).unsqueeze(0)
return img, original_size
def load_img_from_path(path_to_image, img_size):
img = Image.open(path_to_image)
original_size = img.size
transform = transforms.Compose([
transforms.Resize((img_size, img_size)),
transforms.ToTensor()
])
img = transform(img).unsqueeze(0)
return img, original_size
def save_img(img, original_size):
img = img.cpu().clone()
img = img.squeeze(0)
# address tensor value scaling and quantization
img = torch.clamp(img, 0, 1)
img = img.mul(255).byte()
unloader = transforms.ToPILImage()
img = unloader(img)
img = img.resize(original_size, Image.Resampling.LANCZOS)
return img
style_options = {
# famous paintings
'Starry Night': 'StarryNight.jpg',
'Great Wave': 'GreatWave.jpg',
'Scream': 'Scream.jpg',
# styles
'Lego Bricks': 'LegoBricks.jpg',
'Oil Painting': 'OilPainting.jpg',
'Mosaic': 'Mosaic.jpg',
'8Bit': '8Bit.jpg',
}
style_options = {k: f'./style_images/{v}' for k, v in style_options.items()}
@spaces.GPU(duration=25)
def inference(content_image, style_image, style_strength, progress=gr.Progress(track_tqdm=True)):
yield None
print('-'*15)
print('STYLE:', style_image)
img_size = 512
content_img, original_size = load_img(content_image, img_size)
content_img = content_img.to(device)
style_img = load_img_from_path(style_options[style_image], img_size)[0].to(device)
print('CONTENT IMG SIZE:', original_size)
iters = style_strength
lr = 1e-1
alpha = 1
beta = 1
st = time.time()
generated_img = content_img.clone().requires_grad_(True)
optimizer = optim.Adam([generated_img], lr=lr)
for _ in tqdm(range(iters), desc='The magic is happening ✨'):
generated_features = model(generated_img)
content_features = model(content_img)
style_features = model(style_img)
content_loss = 0
style_loss = 0
for generated_feature, content_feature, style_feature in zip(generated_features, content_features, style_features):
batch_size, n_feature_maps, height, width = generated_feature.size()
content_loss += (torch.mean((generated_feature - content_feature) ** 2))
G = torch.mm((generated_feature.view(batch_size * n_feature_maps, height * width)), (generated_feature.view(batch_size * n_feature_maps, height * width)).t())
A = torch.mm((style_feature.view(batch_size * n_feature_maps, height * width)), (style_feature.view(batch_size * n_feature_maps, height * width)).t())
E_l = ((G - A) ** 2)
w_l = 1/5
style_loss += torch.mean(w_l * E_l)
total_loss = alpha * content_loss + beta * style_loss
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
et = time.time()
print('TIME TAKEN:', et-st)
yield save_img(generated_img, original_size)
def set_slider(value):
return gr.update(value=value)
with gr.Blocks(title='🖼️ Neural Style Transfer') as demo:
gr.HTML("<h1 style='text-align: center'>🖼️ Neural Style Transfer</h1>")
with gr.Row():
with gr.Column():
content_image = gr.Image(label='Content', type='pil', sources=['upload'])
style_dropdown = gr.Radio(choices=list(style_options.keys()), label='Style', value='Starry Night', type='value')
with gr.Accordion('Adjustments', open=False):
with gr.Group():
style_strength_slider = gr.Slider(label='Style Strength', minimum=0, maximum=100, step=5, value=50)
with gr.Row():
low_button = gr.Button('Low').click(fn=lambda: set_slider(10), outputs=[style_strength_slider])
medium_button = gr.Button('Medium').click(fn=lambda: set_slider(50), outputs=[style_strength_slider])
high_button = gr.Button('High').click(fn=lambda: set_slider(100), outputs=[style_strength_slider])
submit_button = gr.Button('Submit')
with gr.Column():
output_image = gr.Image(label='Output', show_download_button=True, interactive=False)
submit_button.click(fn=inference, inputs=[content_image, style_dropdown, style_strength_slider], outputs=[output_image])
examples = gr.Examples(
examples=[
['./content_images/TajMahal.jpg', 'Starry Night', 75],
['./content_images/GoldenRetriever.jpg', 'Lego Bricks', 50],
['./content_images/SeaTurtle.jpg', 'Mosaic', 100]
],
inputs=[content_image, style_dropdown, style_strength_slider]
)
demo.launch(show_api=True) |