Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,089 Bytes
00710e8 88b9835 a0f5d9f 0fc4e06 ad85111 75f2ed4 bbcd902 e16d255 75f2ed4 ce6dca2 75f2ed4 57a96a1 e6f200a 91d9343 67d69a3 a84e446 75f2ed4 14fd49f 75f2ed4 917ebd2 75f2ed4 bbcd902 75f2ed4 00710e8 764d4ab 88b9835 b7a47e5 764d4ab 980e9a0 764d4ab b7a47e5 8084836 fa57e87 e21f7c8 57a96a1 75f2ed4 88b9835 91d9343 88b9835 d767ccb 75f2ed4 764d4ab 962b2f7 91d9343 0fc4e06 e21f7c8 0fc4e06 e21f7c8 0fc4e06 e21f7c8 0fc4e06 e21f7c8 d879848 0fc4e06 88b9835 14fd49f 0fc4e06 e21f7c8 d879848 0fc4e06 75f2ed4 424869b ab16048 7f82183 ab16048 7b732c2 0803fb8 ce6dca2 996bbe0 ce6dca2 fa57e87 ce6dca2 fa57e87 ce6dca2 22696bb ce6dca2 0fc4e06 e21f7c8 d879848 0fc4e06 ce6dca2 0fc4e06 ce6dca2 0fc4e06 ce6dca2 ab16048 ce6dca2 0fc4e06 d879848 ce6dca2 0fc4e06 ce6dca2 0fc4e06 ce6dca2 de50edd e21f7c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import os
import time
from datetime import datetime, timezone, timedelta
from concurrent.futures import ThreadPoolExecutor
import spaces
import torch
import torchvision.models as models
import numpy as np
import gradio as gr
from gradio_imageslider import ImageSlider
from utils import preprocess_img, preprocess_img_from_path, postprocess_img
from vgg.vgg19 import VGG_19
from inference import inference
if torch.cuda.is_available(): device = 'cuda'
elif torch.backends.mps.is_available(): device = 'mps'
else: device = 'cpu'
print('DEVICE:', device)
if device == 'cuda': print('CUDA DEVICE:', torch.cuda.get_device_name())
model = VGG_19().to(device).eval()
for param in model.parameters():
param.requires_grad = False
segmentation_model = models.segmentation.deeplabv3_resnet101(
weights='DEFAULT'
).to(device).eval()
style_files = os.listdir('./style_images')
style_options = {' '.join(style_file.split('.')[0].split('_')): f'./style_images/{style_file}' for style_file in style_files}
lrs = np.logspace(np.log10(0.001), np.log10(0.1), 10).tolist()
img_size = 512
cached_style_features = {}
for style_name, style_img_path in style_options.items():
style_img = preprocess_img_from_path(style_img_path, img_size)[0].to(device)
with torch.no_grad():
style_features = model(style_img)
cached_style_features[style_name] = style_features
@spaces.GPU(duration=20)
def run(content_image, style_name, style_strength=10):
yield [None] * 3
content_img, original_size = preprocess_img(content_image, img_size)
content_img = content_img.to(device)
print('-'*15)
print('DATETIME:', datetime.now(timezone.utc) - timedelta(hours=4)) # est
print('STYLE:', style_name)
print('CONTENT IMG SIZE:', original_size)
print('STYLE STRENGTH:', style_strength, f'(lr={lrs[style_strength-1]:.3f})')
style_features = cached_style_features[style_name]
st = time.time()
if device == 'cuda':
stream_all = torch.cuda.Stream()
stream_bg = torch.cuda.Stream()
def run_inference_cuda(apply_to_background, stream):
with torch.cuda.stream(stream):
return run_inference(apply_to_background)
def run_inference(apply_to_background):
return inference(
model=model,
segmentation_model=segmentation_model,
content_image=content_img,
style_features=style_features,
lr=lrs[style_strength-1],
apply_to_background=apply_to_background
)
with ThreadPoolExecutor() as executor:
if device == 'cuda':
future_all = executor.submit(run_inference_cuda, False, stream_all)
future_bg = executor.submit(run_inference_cuda, True, stream_bg)
else:
future_all = executor.submit(run_inference, False)
future_bg = executor.submit(run_inference, True)
generated_img_all, _ = future_all.result()
generated_img_bg, salient_object_ratio = future_bg.result()
et = time.time()
print('TIME TAKEN:', et-st)
yield (
(content_image, postprocess_img(generated_img_all, original_size)),
(content_image, postprocess_img(generated_img_bg, original_size)),
f'{salient_object_ratio:.2f}'
)
def set_slider(value):
return gr.update(value=value)
css = """
#container {
margin: 0 auto;
max-width: 1200px;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML("<h1 style='text-align: center; padding: 10px'>🖼️ Neural Style Transfer w/ Salient Object Masking")
with gr.Row(elem_id='container'):
with gr.Column():
content_image = gr.Image(label='Content', type='pil', sources=['upload', 'webcam', 'clipboard'], format='jpg', show_download_button=False)
style_dropdown = gr.Radio(choices=list(style_options.keys()), label='Style', value='Starry Night', type='value')
with gr.Group():
style_strength_slider = gr.Slider(label='Style Strength', minimum=1, maximum=10, step=1, value=10, info='Higher values add artistic flair, lower values add a realistic feel.')
submit_button = gr.Button('Submit', variant='primary')
examples = gr.Examples(
examples=[
['./content_images/GoldenRetriever.jpg', 'Starry Night'],
['./content_images/CameraGirl.jpg', 'Bokeh']
],
inputs=[content_image, style_dropdown]
)
with gr.Column():
output_image_all = ImageSlider(position=0.15, label='Styled Image', type='pil', interactive=False, show_download_button=False)
download_button_1 = gr.DownloadButton(label='Download Styled Image', visible=False)
with gr.Group():
output_image_background = ImageSlider(position=0.15, label='Styled Background', type='pil', interactive=False, show_download_button=False)
salient_object_ratio_label = gr.Label(label='Salient Object Ratio')
download_button_2 = gr.DownloadButton(label='Download Styled Background', visible=False)
def save_image(img_tuple1, img_tuple2):
filename1, filename2 = 'generated-all.jpg', 'generated-bg.jpg'
img_tuple1[1].save(filename1)
img_tuple2[1].save(filename2)
return filename1, filename2
submit_button.click(
fn=lambda: [gr.update(visible=False) for _ in range(2)],
outputs=[download_button_1, download_button_2]
)
submit_button.click(
fn=run,
inputs=[content_image, style_dropdown, style_strength_slider],
outputs=[output_image_all, output_image_background, salient_object_ratio_label]
).then(
fn=save_image,
inputs=[output_image_all, output_image_background],
outputs=[download_button_1, download_button_2]
).then(
fn=lambda: [gr.update(visible=True) for _ in range(2)],
outputs=[download_button_1, download_button_2]
)
demo.queue = False
demo.config['queue'] = False
demo.launch(show_api=False) |