File size: 4,997 Bytes
88b9835
75f2ed4
632c209
ad85111
 
75f2ed4
 
 
 
 
 
88b9835
75f2ed4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88b9835
 
 
 
 
 
 
 
ad85111
632c209
396f6f7
 
75f2ed4
 
 
88b9835
 
 
75f2ed4
 
 
 
 
 
88b9835
75f2ed4
 
 
632c209
75f2ed4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88b9835
 
 
9edbc68
 
75f2ed4
 
88b9835
df250fa
88b9835
 
df250fa
493509d
88b9835
493509d
88b9835
75f2ed4
88b9835
 
 
 
 
 
 
9edbc68
493509d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import time
from PIL import Image
from tqdm import tqdm

import spaces
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.models as models
import gradio as gr
from gradio_imageslider import ImageSlider

device = 'cpu'
if torch.backends.mps.is_available():
    device = 'mps'
if torch.cuda.is_available():
    device = 'cuda'
print('DEVICE:', device)

class VGG_19(nn.Module):
    def __init__(self):
        super(VGG_19, self).__init__()
        self.model = models.vgg19(pretrained=True).features[:30]
        
        for i, _ in enumerate(self.model):
            if i in [4, 9, 18, 27]:
                self.model[i] = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
                
    def forward(self, x):
        features = []
        
        for i, layer in enumerate(self.model):
            x = layer(x)
            if i in [0, 5, 10, 19, 28]:
                features.append(x)
        return features
    
model = VGG_19().to(device)
for param in model.parameters():
    param.requires_grad = False

def load_img(img: Image, img_size):
    original_size = img.size
    
    transform = transforms.Compose([
        transforms.Resize((img_size, img_size)),
        transforms.ToTensor()
    ])
    img = transform(img).unsqueeze(0)
    return img, original_size

def load_img_from_path(path_to_image, img_size):
    img = Image.open(path_to_image)
    original_size = img.size
    
    transform = transforms.Compose([
        transforms.Resize((img_size, img_size)),
        transforms.ToTensor()
    ])
    img = transform(img).unsqueeze(0)
    return img, original_size

def save_img(img, original_size):
    img = img.cpu().clone()
    img = img.squeeze(0)
    
    # address tensor value scaling and quantization
    img = torch.clamp(img, 0, 1)
    img = img.mul(255).byte()
    
    unloader = transforms.ToPILImage()
    img = unloader(img)
    
    img = img.resize(original_size, Image.Resampling.LANCZOS)
    
    return img


style_options = {
    'Starry Night': 'StarryNight.jpg',
    'Great Wave': 'GreatWave.jpg',
    'Lego Bricks': 'LegoBricks.jpg',
    'Oil Painting': 'OilPainting.jpg',
}
style_options = {k: f'./style_images/{v}' for k, v in style_options.items()}

@spaces.GPU
def inference(content_image, style_image, progress=gr.Progress(track_tqdm=True)):
    print('-'*15)
    print('STYLE:', style_image)
    img_size = 512
    content_img, original_size = load_img(content_image, img_size)
    content_img = content_img.to(device)
    style_img = load_img_from_path(style_options[style_image], img_size)[0].to(device)
    
    print('CONTENT IMG SIZE:', original_size)

    iters = 100
    lr = 1e-1
    alpha = 1
    beta = 1

    st = time.time()
    generated_img = content_img.clone().requires_grad_(True)
    optimizer = optim.Adam([generated_img], lr=lr)

    for iter in tqdm(range(iters+1)):
        generated_features = model(generated_img)
        content_features = model(content_img)
        style_features = model(style_img)
        
        content_loss = 0
        style_loss = 0
        
        for generated_feature, content_feature, style_feature in zip(generated_features, content_features, style_features):

            batch_size, n_feature_maps, height, width = generated_feature.size()
            
            content_loss += (torch.mean((generated_feature - content_feature) ** 2))
            
            G = torch.mm((generated_feature.view(batch_size * n_feature_maps, height * width)), (generated_feature.view(batch_size * n_feature_maps, height * width)).t())
            A = torch.mm((style_feature.view(batch_size * n_feature_maps, height * width)), (style_feature.view(batch_size * n_feature_maps, height * width)).t())
            
            E_l = ((G - A) ** 2)
            w_l = 1/5
            style_loss += torch.mean(w_l * E_l)
            
        total_loss = alpha * content_loss + beta * style_loss
        optimizer.zero_grad()
        total_loss.backward()
        optimizer.step()
    
    et = time.time()
    print('TIME TAKEN:', et-st)
    return content_image, save_img(generated_img, original_size)


interface = gr.Interface(
    fn=inference, 
    inputs=[
        gr.Image(label='Content', type='pil', sources=['upload'], elem_id='content'),
        gr.Dropdown(choices=list(style_options.keys()), label='Style', value='Starry Night', type='value', elem_id='style'),
    ], 
    outputs=[
        ImageSlider(position=0.15, label='Output', show_download_button=True, interactive=False, elem_id='output'),
    ],
    title="🖼️ Neural Style Transfer",
    api_name='style',
    allow_flagging='manual',
    examples=[
        ['./content_images/TajMahal.jpg', 'Starry Night'],
        ['./content_images/GoldenRetriever.jpg', 'Lego Bricks'],
        ['./content_images/Beach.jpg', 'Oil Painting'],
        ['./content_images/StandingOnCliff.png', 'Great Wave'],
    ],
    cache_examples=False
).launch(inbrowser=True)