Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,431 Bytes
00710e8 88b9835 a0f5d9f ad85111 75f2ed4 e16d255 75f2ed4 ce6dca2 75f2ed4 57a96a1 ef58374 91d9343 67d69a3 a84e446 75f2ed4 14fd49f 75f2ed4 917ebd2 75f2ed4 00710e8 764d4ab 88b9835 b7a47e5 764d4ab 980e9a0 764d4ab b7a47e5 1fb7146 a9077eb e287232 57a96a1 75f2ed4 88b9835 91d9343 88b9835 764d4ab 75f2ed4 764d4ab 962b2f7 91d9343 a9077eb 91d9343 88b9835 14fd49f ce6dca2 75f2ed4 424869b ab16048 ce6dca2 ab16048 7b732c2 ab16048 ce6dca2 a706eb7 a9077eb ce6dca2 22696bb ce6dca2 02c5186 ce6dca2 ab16048 ce6dca2 a9077eb ce6dca2 de50edd e9e9628 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
import os
import time
from datetime import datetime, timezone, timedelta
import spaces
import torch
import numpy as np
import gradio as gr
from gradio_imageslider import ImageSlider
from utils import preprocess_img, preprocess_img_from_path, postprocess_img
from vgg19 import VGG_19
from inference import inference
if torch.cuda.is_available(): device = 'cuda'
elif torch.backends.mps.is_available(): device = 'mps'
else: device = 'cpu'
print('DEVICE:', device)
if device == 'cuda': print('CUDA DEVICE:', torch.cuda.get_device_name())
model = VGG_19().to(device).eval()
for param in model.parameters():
param.requires_grad = False
style_files = os.listdir('./style_images')
style_options = {' '.join(style_file.split('.')[0].split('_')): f'./style_images/{style_file}' for style_file in style_files}
lrs = np.logspace(np.log10(0.001), np.log10(0.1), 10).tolist()
img_size = 512
cached_style_features = {}
for style_name, style_img_path in style_options.items():
style_img = preprocess_img_from_path(style_img_path, img_size)[0].to(device)
with torch.no_grad():
style_features = model(style_img)
cached_style_features[style_name] = style_features
@spaces.GPU(duration=10)
def run(content_image, style_name, style_strength=5, apply_to_background=False, progress=gr.Progress(track_tqdm=True)):
yield None
content_img, original_size = preprocess_img(content_image, img_size)
content_img = content_img.to(device)
print('-'*15)
print('DATETIME:', datetime.now(timezone.utc) - timedelta(hours=4)) # est
print('STYLE:', style_name)
print('CONTENT IMG SIZE:', original_size)
print('STYLE STRENGTH:', style_strength, f'(lr={lrs[style_strength-1]})')
style_features = cached_style_features[style_name]
st = time.time()
generated_img = inference(
model=model,
content_image=content_img,
style_features=style_features,
lr=lrs[style_strength-1],
apply_to_background=apply_to_background
)
et = time.time()
print('TIME TAKEN:', et-st)
yield (content_image, postprocess_img(generated_img, original_size))
def set_slider(value):
return gr.update(value=value)
css = """
#container {
margin: 0 auto;
max-width: 1100px;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML("<h1 style='text-align: center; padding: 10px'>🖼️ Neural Style Transfer</h1>")
with gr.Row(elem_id='container'):
with gr.Column():
content_image = gr.Image(label='Content', type='pil', sources=['upload', 'webcam', 'clipboard'], format='jpg', show_download_button=False)
style_dropdown = gr.Radio(choices=list(style_options.keys()), label='Style', value='Starry Night', type='value')
with gr.Group():
style_strength_slider = gr.Slider(label='Style Strength', minimum=1, maximum=10, step=1, value=5, info='Higher values add artistic flair, lower values add a realistic feel.')
apply_to_background = gr.Checkbox(label='Apply to background only')
submit_button = gr.Button('Submit', variant='primary')
examples = gr.Examples(
examples=[
['./content_images/Bridge.jpg', 'Starry Night'],
['./content_images/GoldenRetriever.jpg', 'Great Wave'],
['./content_images/CameraGirl.jpg', 'Bokeh']
],
inputs=[content_image, style_dropdown]
)
with gr.Column():
output_image = ImageSlider(position=0.15, label='Output', show_label=True, type='pil', interactive=False, show_download_button=False)
download_button = gr.DownloadButton(label='Download Image', visible=False)
def save_image(img_tuple):
filename = 'generated.jpg'
img_tuple[1].save(filename)
return filename
submit_button.click(
fn=lambda: gr.update(visible=False),
outputs=[download_button]
)
submit_button.click(
fn=run,
inputs=[content_image, style_dropdown, style_strength_slider, apply_to_background],
outputs=[output_image]
).then(
fn=save_image,
inputs=[output_image],
outputs=[download_button]
).then(
fn=lambda: gr.update(visible=True),
outputs=[download_button]
)
demo.queue = False
demo.config['queue'] = False
demo.launch(show_api=False) |