File size: 4,431 Bytes
00710e8
88b9835
a0f5d9f
ad85111
 
75f2ed4
e16d255
75f2ed4
ce6dca2
75f2ed4
57a96a1
ef58374
91d9343
67d69a3
a84e446
 
 
75f2ed4
14fd49f
75f2ed4
917ebd2
75f2ed4
 
 
00710e8
 
764d4ab
 
88b9835
b7a47e5
 
764d4ab
980e9a0
764d4ab
b7a47e5
 
1fb7146
a9077eb
e287232
57a96a1
75f2ed4
88b9835
91d9343
 
 
88b9835
764d4ab
75f2ed4
764d4ab
962b2f7
91d9343
 
 
 
 
a9077eb
 
91d9343
88b9835
 
14fd49f
ce6dca2
75f2ed4
424869b
 
ab16048
 
 
 
ce6dca2
ab16048
 
 
7b732c2
ab16048
ce6dca2
 
 
 
 
a706eb7
a9077eb
ce6dca2
 
 
 
 
 
 
 
 
 
22696bb
ce6dca2
02c5186
ce6dca2
 
 
 
 
 
 
 
 
 
 
ab16048
ce6dca2
 
a9077eb
ce6dca2
 
 
 
 
 
 
 
 
de50edd
 
 
e9e9628
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import os
import time
from datetime import datetime, timezone, timedelta

import spaces
import torch
import numpy as np
import gradio as gr
from gradio_imageslider import ImageSlider

from utils import preprocess_img, preprocess_img_from_path, postprocess_img
from vgg19 import VGG_19
from inference import inference

if torch.cuda.is_available(): device = 'cuda'
elif torch.backends.mps.is_available(): device = 'mps'
else: device = 'cpu'
print('DEVICE:', device)
if device == 'cuda': print('CUDA DEVICE:', torch.cuda.get_device_name())

model = VGG_19().to(device).eval()
for param in model.parameters():
    param.requires_grad = False

style_files = os.listdir('./style_images')
style_options = {' '.join(style_file.split('.')[0].split('_')): f'./style_images/{style_file}' for style_file in style_files}
lrs = np.logspace(np.log10(0.001), np.log10(0.1), 10).tolist()
img_size = 512

cached_style_features = {}
for style_name, style_img_path in style_options.items():
    style_img = preprocess_img_from_path(style_img_path, img_size)[0].to(device)
    with torch.no_grad():
        style_features = model(style_img)
    cached_style_features[style_name] = style_features 

@spaces.GPU(duration=10)
def run(content_image, style_name, style_strength=5, apply_to_background=False, progress=gr.Progress(track_tqdm=True)):
    yield None
    content_img, original_size = preprocess_img(content_image, img_size)
    content_img = content_img.to(device)
    
    print('-'*15)
    print('DATETIME:', datetime.now(timezone.utc) - timedelta(hours=4)) # est
    print('STYLE:', style_name)
    print('CONTENT IMG SIZE:', original_size)
    print('STYLE STRENGTH:', style_strength, f'(lr={lrs[style_strength-1]})')

    style_features = cached_style_features[style_name]
    
    st = time.time()
    generated_img = inference(
        model=model,
        content_image=content_img,
        style_features=style_features,
        lr=lrs[style_strength-1],
        apply_to_background=apply_to_background
    )
    et = time.time()
    print('TIME TAKEN:', et-st)
    
    yield (content_image, postprocess_img(generated_img, original_size))

def set_slider(value):
    return gr.update(value=value)

css = """
#container {
    margin: 0 auto;
    max-width: 1100px;
}
"""

with gr.Blocks(css=css) as demo:
    gr.HTML("<h1 style='text-align: center; padding: 10px'>🖼️ Neural Style Transfer</h1>")
    with gr.Row(elem_id='container'):
        with gr.Column():
            content_image = gr.Image(label='Content', type='pil', sources=['upload', 'webcam', 'clipboard'], format='jpg', show_download_button=False)
            style_dropdown = gr.Radio(choices=list(style_options.keys()), label='Style', value='Starry Night', type='value')
            with gr.Group():
                style_strength_slider = gr.Slider(label='Style Strength', minimum=1, maximum=10, step=1, value=5, info='Higher values add artistic flair, lower values add a realistic feel.')
                apply_to_background = gr.Checkbox(label='Apply to background only')
            submit_button = gr.Button('Submit', variant='primary')
            
            examples = gr.Examples(
                examples=[
                    ['./content_images/Bridge.jpg', 'Starry Night'],
                    ['./content_images/GoldenRetriever.jpg', 'Great Wave'],
                    ['./content_images/CameraGirl.jpg', 'Bokeh']
                ],
                inputs=[content_image, style_dropdown]
            )

        with gr.Column():
            output_image = ImageSlider(position=0.15, label='Output', show_label=True, type='pil', interactive=False, show_download_button=False)
            download_button = gr.DownloadButton(label='Download Image', visible=False)

    def save_image(img_tuple):
        filename = 'generated.jpg'
        img_tuple[1].save(filename)
        return filename
    
    submit_button.click(
        fn=lambda: gr.update(visible=False),
        outputs=[download_button]
    )
        
    submit_button.click(
        fn=run, 
        inputs=[content_image, style_dropdown, style_strength_slider, apply_to_background], 
        outputs=[output_image]
    ).then(
        fn=save_image,
        inputs=[output_image],
        outputs=[download_button]
    ).then(
        fn=lambda: gr.update(visible=True),
        outputs=[download_button]
    )

demo.queue = False
demo.config['queue'] = False
demo.launch(show_api=False)