Spaces:
Sleeping
Sleeping
File size: 4,970 Bytes
88b9835 75f2ed4 632c209 ad85111 75f2ed4 c26eeef 75f2ed4 88b9835 75f2ed4 c26eeef 75f2ed4 88b9835 ad85111 632c209 21eda87 396f6f7 75f2ed4 88b9835 75f2ed4 88b9835 75f2ed4 632c209 75f2ed4 88b9835 21eda87 9edbc68 75f2ed4 88b9835 df250fa 88b9835 df250fa 493509d 88b9835 493509d 88b9835 75f2ed4 88b9835 c26eeef 493509d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import time
from PIL import Image
from tqdm import tqdm
import spaces
import torch
import torch.nn as nn
import torch.optim as optim
import torch.amp as amp
import torchvision.transforms as transforms
import torchvision.models as models
import gradio as gr
from gradio_imageslider import ImageSlider
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('DEVICE:', device)
class VGG_19(nn.Module):
def __init__(self):
super(VGG_19, self).__init__()
self.model = models.vgg19(pretrained=True).features[:30]
for i, _ in enumerate(self.model):
if i in [4, 9, 18, 27]:
self.model[i] = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
def forward(self, x):
features = []
for i, layer in enumerate(self.model):
x = layer(x)
if i in [0, 5, 10, 19, 28]:
features.append(x)
return features
model = VGG_19().to(device)
for param in model.parameters():
param.requires_grad = False
def load_img(img: Image, img_size):
original_size = img.size
transform = transforms.Compose([
transforms.Resize((img_size, img_size)),
transforms.ToTensor()
])
img = transform(img).unsqueeze(0)
return img, original_size
def load_img_from_path(path_to_image, img_size):
img = Image.open(path_to_image)
original_size = img.size
transform = transforms.Compose([
transforms.Resize((img_size, img_size)),
transforms.ToTensor()
])
img = transform(img).unsqueeze(0)
return img, original_size
def save_img(img, original_size):
img = img.cpu().clone()
img = img.squeeze(0)
# address tensor value scaling and quantization
img = torch.clamp(img, 0, 1)
img = img.mul(255).byte()
unloader = transforms.ToPILImage()
img = unloader(img)
img = img.resize(original_size, Image.Resampling.LANCZOS)
return img
style_options = {
'Starry Night': 'StarryNight.jpg',
'Great Wave': 'GreatWave.jpg',
'Lego Bricks': 'LegoBricks.jpg',
'Oil Painting': 'OilPainting.jpg',
}
style_options = {k: f'./style_images/{v}' for k, v in style_options.items()}
@spaces.GPU
def inference(content_image, style_image, progress=gr.Progress(track_tqdm=True)):
yield None
print('-'*15)
print('STYLE:', style_image)
img_size = 512
content_img, original_size = load_img(content_image, img_size)
content_img = content_img.to(device)
style_img = load_img_from_path(style_options[style_image], img_size)[0].to(device)
print('CONTENT IMG SIZE:', original_size)
iters = 100
lr = 1e-1
alpha = 1
beta = 1
st = time.time()
generated_img = content_img.clone().requires_grad_(True)
optimizer = optim.Adam([generated_img], lr=lr)
for iter in tqdm(range(iters+1)):
generated_features = model(generated_img)
content_features = model(content_img)
style_features = model(style_img)
content_loss = 0
style_loss = 0
for generated_feature, content_feature, style_feature in zip(generated_features, content_features, style_features):
batch_size, n_feature_maps, height, width = generated_feature.size()
content_loss += (torch.mean((generated_feature - content_feature) ** 2))
G = torch.mm((generated_feature.view(batch_size * n_feature_maps, height * width)), (generated_feature.view(batch_size * n_feature_maps, height * width)).t())
A = torch.mm((style_feature.view(batch_size * n_feature_maps, height * width)), (style_feature.view(batch_size * n_feature_maps, height * width)).t())
E_l = ((G - A) ** 2)
w_l = 1/5
style_loss += torch.mean(w_l * E_l)
total_loss = alpha * content_loss + beta * style_loss
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
et = time.time()
print('TIME TAKEN:', et-st)
yield content_image, save_img(generated_img, original_size)
interface = gr.Interface(
fn=inference,
inputs=[
gr.Image(label='Content', type='pil', sources=['upload'], elem_id='content'),
gr.Dropdown(choices=list(style_options.keys()), label='Style', value='Starry Night', type='value', elem_id='style'),
],
outputs=[
ImageSlider(position=0.15, label='Output', show_download_button=True, interactive=False, elem_id='output'),
],
title="🖼️ Neural Style Transfer",
api_name='style',
allow_flagging='manual',
examples=[
['./content_images/TajMahal.jpg', 'Starry Night'],
['./content_images/GoldenRetriever.jpg', 'Lego Bricks'],
['./content_images/Beach.jpg', 'Oil Painting'],
['./content_images/StandingOnCliff.png', 'Great Wave'],
],
cache_examples='lazy'
).launch(inbrowser=True) |