File size: 4,833 Bytes
00710e8
88b9835
a0f5d9f
ad85111
 
75f2ed4
 
 
57a96a1
ef58374
91d9343
67d69a3
a84e446
 
 
75f2ed4
14fd49f
75f2ed4
917ebd2
75f2ed4
 
 
00710e8
 
88b9835
b7a47e5
 
980e9a0
 
 
b7a47e5
 
 
b9f6209
e9e9628
e287232
caf9141
57a96a1
75f2ed4
88b9835
91d9343
 
 
88b9835
67d69a3
f5c8b45
75f2ed4
b7a47e5
3d5845b
962b2f7
91d9343
 
 
 
 
e9e9628
91d9343
88b9835
 
14fd49f
e287232
9edbc68
75f2ed4
424869b
 
ab16048
 
 
 
 
 
 
 
 
 
 
8521011
b6b1222
246dd82
 
ab16048
01dd5e7
2eca929
ab16048
2eca929
 
 
caf9141
a9b3014
57a96a1
 
22696bb
 
411ad13
 
22696bb
 
 
57a96a1
91d9343
e9e9628
57a96a1
 
411ad13
 
 
22696bb
411ad13
57a96a1
 
 
 
 
 
 
 
ab16048
 
246dd82
 
e9e9628
ab16048
de50edd
 
 
e9e9628
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import os
import time
from datetime import datetime, timezone, timedelta

import spaces
import torch
import gradio as gr

from utils import preprocess_img, preprocess_img_from_path, postprocess_img
from vgg19 import VGG_19
from inference import inference

if torch.cuda.is_available(): device = 'cuda'
elif torch.backends.mps.is_available(): device = 'mps'
else: device = 'cpu'
print('DEVICE:', device)
if device == 'cuda': print('CUDA DEVICE:', torch.cuda.get_device_name())

model = VGG_19().to(device).eval()
for param in model.parameters():
    param.requires_grad = False

style_files = os.listdir('./style_images')
style_options = {' '.join(style_file.split('.')[0].split('_')): f'./style_images/{style_file}' for style_file in style_files}

cached_style_features = {}
for style_name, style_img_path in style_options.items():
    style_img_512 = preprocess_img_from_path(style_img_path, 512)[0].to(device)
    style_img_1024 = preprocess_img_from_path(style_img_path, 1024)[0].to(device)
    with torch.no_grad():
        style_features = (model(style_img_512), model(style_img_1024))
    cached_style_features[style_name] = style_features 

@spaces.GPU(duration=15)
def run(content_image, style_name, style_strength, output_quality, progress=gr.Progress(track_tqdm=True)):
    yield None
    img_size = 1024 if output_quality else 512
    content_img, original_size = preprocess_img(content_image, img_size)
    content_img = content_img.to(device)
    
    print('-'*15)
    print('DATETIME:', datetime.now(timezone.utc) - timedelta(hours=4)) # est
    print('STYLE:', style_name)
    print('CONTENT IMG SIZE:', original_size)
    print('STYLE STRENGTH:', style_strength)
    print('HIGH QUALITY:', output_quality)

    style_features = cached_style_features[style_name][0 if img_size == 512 else 1]
    converted_lr = 0.001 + (0.009 / 99) * (style_strength - 1) # [0.001, 0.01]
    
    st = time.time()
    generated_img = inference(
        model=model,
        content_image=content_img,
        style_features=style_features,
        lr=converted_lr
    )
    et = time.time()
    print('TIME TAKEN:', et-st)
    
    yield postprocess_img(generated_img, original_size)


def set_slider(value):
    return gr.update(value=value)

css = """
#container {
    margin: 0 auto;
    max-width: 550px;
}
"""

with gr.Blocks(css=css) as demo:
    gr.HTML("<h1 style='text-align: center; padding: 10px'>🖼️ Neural Style Transfer</h1>")
    with gr.Column(elem_id='container'):
        content_and_output = gr.Image(label='Content', show_label=False, type='pil', sources=['upload', 'webcam', 'clipboard'], format='jpg', show_download_button=False)
        style_dropdown = gr.Radio(choices=list(style_options.keys()), label='Style', value='Starry Night', type='value')
        
        with gr.Accordion('Adjustments', open=True):
            with gr.Group():
                style_strength_slider = gr.Slider(label='Style Strength', minimum=1, maximum=100, step=1, value=50)
                
                with gr.Row():
                    low_button = gr.Button('Low', size='sm').click(fn=lambda: set_slider(10), outputs=[style_strength_slider])
                    medium_button = gr.Button('Medium', size='sm').click(fn=lambda: set_slider(50), outputs=[style_strength_slider])
                    high_button = gr.Button('High', size='sm').click(fn=lambda: set_slider(100), outputs=[style_strength_slider])
            with gr.Group():
                output_quality = gr.Checkbox(label='More Realistic', info='Note: If unchecked, the resulting image will have a more artistic flair.')
        
        submit_button = gr.Button('Submit', variant='primary')
        download_button = gr.DownloadButton(label='Download Image', visible=False)

        def save_image(img):
            filename = 'generated.jpg'
            img.save(filename)
            return filename
        
        submit_button.click(
            fn=run, 
            inputs=[content_and_output, style_dropdown, style_strength_slider, output_quality], 
            outputs=[content_and_output]
        ).then(
            fn=save_image,
            inputs=[content_and_output],
            outputs=[download_button]
        ).then(
            fn=lambda: gr.update(visible=True),
            outputs=[download_button]
        )
        
        content_and_output.change(
            fn=lambda _: gr.update(visible=False),
            inputs=[content_and_output],
            outputs=[download_button]
        )
        
        examples = gr.Examples(
            label='Example',
            examples=[['./content_images/Bridge.jpg', 'Starry Night', 100, False]],
            inputs=[content_and_output, style_dropdown, style_strength_slider, output_quality]
        )

demo.queue = False
demo.config['queue'] = False
demo.launch(show_api=False)