Spaces:
Sleeping
Sleeping
File size: 4,833 Bytes
00710e8 88b9835 a0f5d9f ad85111 75f2ed4 57a96a1 ef58374 91d9343 67d69a3 a84e446 75f2ed4 14fd49f 75f2ed4 917ebd2 75f2ed4 00710e8 88b9835 b7a47e5 980e9a0 b7a47e5 b9f6209 e9e9628 e287232 caf9141 57a96a1 75f2ed4 88b9835 91d9343 88b9835 67d69a3 f5c8b45 75f2ed4 b7a47e5 3d5845b 962b2f7 91d9343 e9e9628 91d9343 88b9835 14fd49f e287232 9edbc68 75f2ed4 424869b ab16048 8521011 b6b1222 246dd82 ab16048 01dd5e7 2eca929 ab16048 2eca929 caf9141 a9b3014 57a96a1 22696bb 411ad13 22696bb 57a96a1 91d9343 e9e9628 57a96a1 411ad13 22696bb 411ad13 57a96a1 ab16048 246dd82 e9e9628 ab16048 de50edd e9e9628 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
import os
import time
from datetime import datetime, timezone, timedelta
import spaces
import torch
import gradio as gr
from utils import preprocess_img, preprocess_img_from_path, postprocess_img
from vgg19 import VGG_19
from inference import inference
if torch.cuda.is_available(): device = 'cuda'
elif torch.backends.mps.is_available(): device = 'mps'
else: device = 'cpu'
print('DEVICE:', device)
if device == 'cuda': print('CUDA DEVICE:', torch.cuda.get_device_name())
model = VGG_19().to(device).eval()
for param in model.parameters():
param.requires_grad = False
style_files = os.listdir('./style_images')
style_options = {' '.join(style_file.split('.')[0].split('_')): f'./style_images/{style_file}' for style_file in style_files}
cached_style_features = {}
for style_name, style_img_path in style_options.items():
style_img_512 = preprocess_img_from_path(style_img_path, 512)[0].to(device)
style_img_1024 = preprocess_img_from_path(style_img_path, 1024)[0].to(device)
with torch.no_grad():
style_features = (model(style_img_512), model(style_img_1024))
cached_style_features[style_name] = style_features
@spaces.GPU(duration=15)
def run(content_image, style_name, style_strength, output_quality, progress=gr.Progress(track_tqdm=True)):
yield None
img_size = 1024 if output_quality else 512
content_img, original_size = preprocess_img(content_image, img_size)
content_img = content_img.to(device)
print('-'*15)
print('DATETIME:', datetime.now(timezone.utc) - timedelta(hours=4)) # est
print('STYLE:', style_name)
print('CONTENT IMG SIZE:', original_size)
print('STYLE STRENGTH:', style_strength)
print('HIGH QUALITY:', output_quality)
style_features = cached_style_features[style_name][0 if img_size == 512 else 1]
converted_lr = 0.001 + (0.009 / 99) * (style_strength - 1) # [0.001, 0.01]
st = time.time()
generated_img = inference(
model=model,
content_image=content_img,
style_features=style_features,
lr=converted_lr
)
et = time.time()
print('TIME TAKEN:', et-st)
yield postprocess_img(generated_img, original_size)
def set_slider(value):
return gr.update(value=value)
css = """
#container {
margin: 0 auto;
max-width: 550px;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML("<h1 style='text-align: center; padding: 10px'>🖼️ Neural Style Transfer</h1>")
with gr.Column(elem_id='container'):
content_and_output = gr.Image(label='Content', show_label=False, type='pil', sources=['upload', 'webcam', 'clipboard'], format='jpg', show_download_button=False)
style_dropdown = gr.Radio(choices=list(style_options.keys()), label='Style', value='Starry Night', type='value')
with gr.Accordion('Adjustments', open=True):
with gr.Group():
style_strength_slider = gr.Slider(label='Style Strength', minimum=1, maximum=100, step=1, value=50)
with gr.Row():
low_button = gr.Button('Low', size='sm').click(fn=lambda: set_slider(10), outputs=[style_strength_slider])
medium_button = gr.Button('Medium', size='sm').click(fn=lambda: set_slider(50), outputs=[style_strength_slider])
high_button = gr.Button('High', size='sm').click(fn=lambda: set_slider(100), outputs=[style_strength_slider])
with gr.Group():
output_quality = gr.Checkbox(label='More Realistic', info='Note: If unchecked, the resulting image will have a more artistic flair.')
submit_button = gr.Button('Submit', variant='primary')
download_button = gr.DownloadButton(label='Download Image', visible=False)
def save_image(img):
filename = 'generated.jpg'
img.save(filename)
return filename
submit_button.click(
fn=run,
inputs=[content_and_output, style_dropdown, style_strength_slider, output_quality],
outputs=[content_and_output]
).then(
fn=save_image,
inputs=[content_and_output],
outputs=[download_button]
).then(
fn=lambda: gr.update(visible=True),
outputs=[download_button]
)
content_and_output.change(
fn=lambda _: gr.update(visible=False),
inputs=[content_and_output],
outputs=[download_button]
)
examples = gr.Examples(
label='Example',
examples=[['./content_images/Bridge.jpg', 'Starry Night', 100, False]],
inputs=[content_and_output, style_dropdown, style_strength_slider, output_quality]
)
demo.queue = False
demo.config['queue'] = False
demo.launch(show_api=False) |