Spaces:
Running
on
Zero
Running
on
Zero
import pickle | |
from tqdm import tqdm | |
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
from torch.utils.data import DataLoader, ConcatDataset | |
from torch.amp import autocast, GradScaler | |
from data_loader import DUTSDataset, MSRADataset | |
from model import U2Net | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
scaler = GradScaler() | |
def train_one_epoch(model, loader, criterion, optimizer): | |
model.train() | |
running_loss = 0. | |
for images, masks in tqdm(loader, desc='Training', leave=False): | |
images, masks = images.to(device, non_blocking=True), masks.to(device, non_blocking=True) | |
optimizer.zero_grad() | |
with autocast(device_type='cuda'): | |
outputs = model(images) | |
loss = sum([criterion(output, masks) for output in outputs]) | |
scaler.scale(loss).backward() | |
scaler.step(optimizer) | |
scaler.update() | |
running_loss += loss.item() | |
return running_loss / len(loader) | |
def validate(model, loader, criterion): | |
model.eval() | |
running_loss = 0. | |
with torch.no_grad(): | |
for images, masks in tqdm(loader, desc='Validating', leave=False): | |
images, masks = images.to(device, non_blocking=True), masks.to(device, non_blocking=True) | |
outputs = model(images) | |
loss = sum([criterion(output, masks) for output in outputs]) | |
running_loss += loss.item() | |
avg_loss = running_loss / len(loader) | |
return avg_loss | |
if __name__ == '__main__': | |
batch_size = 40 | |
valid_batch_size = 80 | |
epochs = 100 | |
lr = 1e-4 | |
loss_fn = nn.BCEWithLogitsLoss(reduction='mean') | |
model_name = 'u2net-duts' | |
model = U2Net() | |
model = torch.nn.DataParallel(model.to(device)) | |
optimizer = optim.AdamW(model.parameters(), lr=lr, weight_decay=1e-4) | |
train_loader = DataLoader( | |
ConcatDataset([DUTSDataset(split='train'), MSRADataset(split='train')]), | |
batch_size=batch_size, shuffle=True, pin_memory=True, | |
num_workers=16, persistent_workers=True | |
) | |
valid_loader = DataLoader( | |
ConcatDataset([DUTSDataset(split='valid'), MSRADataset(split='valid')]), | |
batch_size=valid_batch_size, shuffle=False, pin_memory=True, | |
num_workers=16, persistent_workers=True | |
) | |
losses = {'train': [], 'val': []} | |
for epoch in tqdm(range(epochs), desc='Epochs'): | |
torch.cuda.empty_cache() | |
train_loss = train_one_epoch(model, train_loader, loss_fn, optimizer) | |
val_loss = validate(model, valid_loader, loss_fn) | |
losses['train'].append(train_loss) | |
losses['val'].append(val_loss) | |
if (epoch + 1) % 10 == 0: | |
torch.save(model.state_dict(), f'results/inter-{model_name}.pt') | |
print(f'Epoch [{epoch+1}/{epochs}], Train Loss: {train_loss:.4f}, Val Loss: {val_loss:.4f}') | |
torch.save(model.state_dict(), f'results/{model_name}.pt') | |
with open('results/loss.txt', 'wb') as f: | |
pickle.dump(losses, f) |