Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import time | |
from datetime import datetime, timezone, timedelta | |
from concurrent.futures import ThreadPoolExecutor | |
import spaces | |
import torch | |
import torchvision.models as models | |
import numpy as np | |
import gradio as gr | |
from gradio_imageslider import ImageSlider | |
from safetensors.torch import load_file | |
from utils import preprocess_img, preprocess_img_from_path, postprocess_img | |
from vgg.vgg19 import VGG_19 | |
from u2net.model import U2Net | |
from inference import inference | |
if torch.cuda.is_available(): device = 'cuda' | |
elif torch.backends.mps.is_available(): device = 'mps' | |
else: device = 'cpu' | |
print('DEVICE:', device) | |
if device == 'cuda': print('CUDA DEVICE:', torch.cuda.get_device_name()) | |
def load_model_without_module(model, model_path): | |
state_dict = load_file(model_path, device=device) | |
new_state_dict = {} | |
for k, v in state_dict.items(): | |
name = k[7:] if k.startswith('module.') else k | |
new_state_dict[name] = v | |
model.load_state_dict(new_state_dict) | |
model = VGG_19().to(device).eval() | |
for param in model.parameters(): | |
param.requires_grad = False | |
sod_model = U2Net().to(device).eval() | |
load_model_without_module(sod_model, 'u2net/saved_models/u2net-duts-msra.safetensors') | |
style_files = os.listdir('./style_images') | |
style_options = {' '.join(style_file.split('.')[0].split('_')): f'./style_images/{style_file}' for style_file in style_files} | |
lrs = np.logspace(np.log10(0.0025), np.log10(0.25), 10).tolist() | |
img_size = 512 | |
cached_style_features = {} | |
for style_name, style_img_path in style_options.items(): | |
style_img = preprocess_img_from_path(style_img_path, img_size)[0].to(device) | |
with torch.no_grad(): | |
style_features = model(style_img) | |
cached_style_features[style_name] = style_features | |
def run(content_image, style_name, style_strength=10): | |
yield [None] * 3 | |
content_img, original_size = preprocess_img(content_image, img_size) | |
content_img = content_img.to(device) | |
print('-'*15) | |
print('DATETIME:', datetime.now(timezone.utc) - timedelta(hours=4)) # est | |
print('STYLE:', style_name) | |
print('CONTENT IMG SIZE:', original_size) | |
print('STYLE STRENGTH:', style_strength, f'(lr={lrs[style_strength-1]:.3f})') | |
style_features = cached_style_features[style_name] | |
st = time.time() | |
if device == 'cuda': | |
stream_all = torch.cuda.Stream() | |
stream_bg = torch.cuda.Stream() | |
def run_inference_cuda(apply_to_background, stream): | |
with torch.cuda.stream(stream): | |
return run_inference(apply_to_background) | |
def run_inference(apply_to_background): | |
return inference( | |
model=model, | |
sod_model=sod_model, | |
content_image=content_img, | |
style_features=style_features, | |
lr=lrs[style_strength-1], | |
apply_to_background=apply_to_background | |
) | |
with ThreadPoolExecutor() as executor: | |
if device == 'cuda': | |
future_all = executor.submit(run_inference_cuda, False, stream_all) | |
future_bg = executor.submit(run_inference_cuda, True, stream_bg) | |
else: | |
future_all = executor.submit(run_inference, False) | |
future_bg = executor.submit(run_inference, True) | |
generated_img_all, _ = future_all.result() | |
generated_img_bg, bg_ratio = future_bg.result() | |
et = time.time() | |
print('TIME TAKEN:', et-st) | |
yield ( | |
(content_image, postprocess_img(generated_img_all, original_size)), | |
(content_image, postprocess_img(generated_img_bg, original_size)), | |
f'{bg_ratio:.2f}' | |
) | |
def set_slider(value): | |
return gr.update(value=value) | |
css = """ | |
#container { | |
margin: 0 auto; | |
max-width: 1200px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.HTML("<h1 style='text-align: center; padding: 10px'>🖼️ Neural Style Transfer w/ Salient Object Masking") | |
with gr.Row(elem_id='container'): | |
with gr.Column(): | |
content_image = gr.Image(label='Content', type='pil', sources=['upload', 'webcam', 'clipboard'], format='jpg', show_download_button=False) | |
style_dropdown = gr.Radio(choices=list(style_options.keys()), label='Style', value='Starry Night', type='value') | |
with gr.Group(): | |
style_strength_slider = gr.Slider(label='Style Strength', minimum=1, maximum=10, step=1, value=5, info='Higher values add artistic flair, lower values add a realistic feel.') | |
submit_button = gr.Button('Submit', variant='primary') | |
examples = gr.Examples( | |
examples=[ | |
['./content_images/GoldenRetriever.jpg', 'Starry Night'], | |
['./content_images/CameraGirl.jpg', 'Bokeh'] | |
], | |
inputs=[content_image, style_dropdown] | |
) | |
with gr.Column(): | |
output_image_all = ImageSlider(position=0.15, label='Styled Image', type='pil', interactive=False, show_download_button=False) | |
download_button_1 = gr.DownloadButton(label='Download Styled Image', visible=False) | |
with gr.Group(): | |
output_image_background = ImageSlider(position=0.15, label='Styled Background', type='pil', interactive=False, show_download_button=False) | |
bg_ratio_label = gr.Label(label='Background Ratio') | |
download_button_2 = gr.DownloadButton(label='Download Styled Background', visible=False) | |
def save_image(img_tuple1, img_tuple2): | |
filename1, filename2 = 'generated-all.jpg', 'generated-bg.jpg' | |
img_tuple1[1].save(filename1) | |
img_tuple2[1].save(filename2) | |
return filename1, filename2 | |
submit_button.click( | |
fn=lambda: [gr.update(visible=False) for _ in range(2)], | |
outputs=[download_button_1, download_button_2] | |
) | |
submit_button.click( | |
fn=run, | |
inputs=[content_image, style_dropdown, style_strength_slider], | |
outputs=[output_image_all, output_image_background, bg_ratio_label] | |
).then( | |
fn=save_image, | |
inputs=[output_image_all, output_image_background], | |
outputs=[download_button_1, download_button_2] | |
).then( | |
fn=lambda: [gr.update(visible=True) for _ in range(2)], | |
outputs=[download_button_1, download_button_2] | |
) | |
demo.queue = False | |
demo.config['queue'] = False | |
demo.launch(show_api=False) | |