jamino30's picture
Upload folder using huggingface_hub
662e0b6 verified
raw
history blame
5.79 kB
import time
from PIL import Image
from tqdm import tqdm
import spaces
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.models as models
import gradio as gr
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('DEVICE:', device)
class VGG_19(nn.Module):
def __init__(self):
super(VGG_19, self).__init__()
self.model = models.vgg19(pretrained=True).features[:30]
for i, _ in enumerate(self.model):
if i in [4, 9, 18, 27]:
self.model[i] = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
def forward(self, x):
features = []
for i, layer in enumerate(self.model):
x = layer(x)
if i in [0, 5, 10, 19, 28]:
features.append(x)
return features
model = VGG_19().to(device)
for param in model.parameters():
param.requires_grad = False
def load_img(img: Image, img_size):
original_size = img.size
transform = transforms.Compose([
transforms.Resize((img_size, img_size)),
transforms.ToTensor()
])
img = transform(img).unsqueeze(0)
return img, original_size
def load_img_from_path(path_to_image, img_size):
img = Image.open(path_to_image)
original_size = img.size
transform = transforms.Compose([
transforms.Resize((img_size, img_size)),
transforms.ToTensor()
])
img = transform(img).unsqueeze(0)
return img, original_size
def save_img(img, original_size):
img = img.cpu().clone()
img = img.squeeze(0)
# address tensor value scaling and quantization
img = torch.clamp(img, 0, 1)
img = img.mul(255).byte()
unloader = transforms.ToPILImage()
img = unloader(img)
img = img.resize(original_size, Image.Resampling.LANCZOS)
return img
style_options = {
'Starry Night': 'StarryNight.jpg',
'Great Wave': 'GreatWave.jpg',
'Lego Bricks': 'LegoBricks.jpg',
'Oil Painting': 'OilPainting.jpg',
}
style_options = {k: f'./style_images/{v}' for k, v in style_options.items()}
@spaces.GPU
def inference(content_image, style_image, style_strength, progress=gr.Progress(track_tqdm=True)):
yield None
print('-'*15)
print('STYLE:', style_image)
img_size = 512
content_img, original_size = load_img(content_image, img_size)
content_img = content_img.to(device)
style_img = load_img_from_path(style_options[style_image], img_size)[0].to(device)
print('CONTENT IMG SIZE:', original_size)
iters = style_strength
lr = 1e-1
alpha = 1
beta = 1
st = time.time()
generated_img = content_img.clone().requires_grad_(True)
optimizer = optim.Adam([generated_img], lr=lr)
for _ in tqdm(range(iters)):
generated_features = model(generated_img)
content_features = model(content_img)
style_features = model(style_img)
content_loss = 0
style_loss = 0
for generated_feature, content_feature, style_feature in zip(generated_features, content_features, style_features):
batch_size, n_feature_maps, height, width = generated_feature.size()
content_loss += (torch.mean((generated_feature - content_feature) ** 2))
G = torch.mm((generated_feature.view(batch_size * n_feature_maps, height * width)), (generated_feature.view(batch_size * n_feature_maps, height * width)).t())
A = torch.mm((style_feature.view(batch_size * n_feature_maps, height * width)), (style_feature.view(batch_size * n_feature_maps, height * width)).t())
E_l = ((G - A) ** 2)
w_l = 1/5
style_loss += torch.mean(w_l * E_l)
total_loss = alpha * content_loss + beta * style_loss
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
et = time.time()
print('TIME TAKEN:', et-st)
yield save_img(generated_img, original_size)
examples = [
# page 1
['./content_images/TajMahal.jpg', 'Starry Night', 75],
['./content_images/GoldenRetriever.jpg', 'Lego Bricks', 50],
['./content_images/Beach.jpg', 'Oil Painting', 50],
['./content_images/StandingOnCliff.png', 'Great Wave', 75],
# page 2
['./content_images/Surfer.jpg', 'Starry Night', 75],
['./content_images/CameraGirl.jpg', 'Lego Bricks', 50],
['./content_images/NYCSkyline.jpg', 'Oil Painting', 50],
['./content_images/GoldenRetriever.jpg', 'Great Wave', 75],
]
with gr.Blocks(title='🖼️ Neural Style Transfer') as demo:
gr.HTML("<h1 style='text-align: center'>🖼️ Neural Style Transfer</h1>")
with gr.Row():
with gr.Column():
content_image = gr.Image(label='Content', type='pil', sources=['upload'])
style_dropdown = gr.Dropdown(choices=list(style_options.keys()), label='Style', value='Starry Night', type='value')
with gr.Accordion('Advanced Settings', open=False):
style_strength = gr.Slider(label='Style Strength', minimum=0, maximum=100, step=5, value=50)
submit_button = gr.Button('Submit')
with gr.Column():
output_image = gr.Image(label='Output', show_download_button=True, interactive=False)
submit_button.click(fn=inference, inputs=[content_image, style_dropdown, style_strength], outputs=[output_image])
gr.Examples(
fn=inference,
examples=examples,
inputs=[content_image, style_dropdown, style_strength],
outputs=[output_image],
examples_per_page=len(style_options),
cache_examples='lazy',
)
demo.launch(inbrowser=True, show_api=True)