jamino30 commited on
Commit
06894c7
·
verified ·
1 Parent(s): 91d9343

Upload folder using huggingface_hub

Browse files
Files changed (2) hide show
  1. app.py +2 -2
  2. inference.py +4 -4
app.py CHANGED
@@ -40,7 +40,7 @@ for style_name, style_img_path in style_options.items():
40
  style_features = (model(style_img_512), model(style_img_1024))
41
  cached_style_features[style_name] = style_features
42
 
43
- @spaces.GPU(duration=6)
44
  def run(content_image, style_name, style_strength, output_quality, progress=gr.Progress(track_tqdm=True)):
45
  img_size = 1024 if output_quality else 512
46
  content_img, original_size = preprocess_img(content_image, img_size)
@@ -66,7 +66,7 @@ def run(content_image, style_name, style_strength, output_quality, progress=gr.P
66
  et = time.time()
67
  print('TIME TAKEN:', et-st)
68
 
69
- return postprocess_img(generated_img, original_size)
70
 
71
 
72
  def set_slider(value):
 
40
  style_features = (model(style_img_512), model(style_img_1024))
41
  cached_style_features[style_name] = style_features
42
 
43
+ @spaces.GPU(duration=10)
44
  def run(content_image, style_name, style_strength, output_quality, progress=gr.Progress(track_tqdm=True)):
45
  img_size = 1024 if output_quality else 512
46
  content_img, original_size = preprocess_img(content_image, img_size)
 
66
  et = time.time()
67
  print('TIME TAKEN:', et-st)
68
 
69
+ yield postprocess_img(generated_img, original_size)
70
 
71
 
72
  def set_slider(value):
inference.py CHANGED
@@ -30,8 +30,8 @@ def inference(
30
  alpha=1,
31
  beta=1
32
  ):
33
- geenrated_image = content_image.clone().requires_grad_(True)
34
- optimizer = optim.AdamW([geenrated_image], lr=lr)
35
 
36
  with torch.no_grad():
37
  content_features = model(content_image)
@@ -39,10 +39,10 @@ def inference(
39
  for _ in tqdm(range(iterations), desc='The magic is happening ✨'):
40
  optimizer.zero_grad()
41
 
42
- generated_features = model(geenrated_image)
43
  total_loss = _compute_loss(generated_features, content_features, style_features, alpha, beta)
44
 
45
  total_loss.backward()
46
  optimizer.step()
47
 
48
- return geenrated_image
 
30
  alpha=1,
31
  beta=1
32
  ):
33
+ generated_image = content_image.clone().requires_grad_(True)
34
+ optimizer = optim.AdamW([generated_image], lr=lr)
35
 
36
  with torch.no_grad():
37
  content_features = model(content_image)
 
39
  for _ in tqdm(range(iterations), desc='The magic is happening ✨'):
40
  optimizer.zero_grad()
41
 
42
+ generated_features = model(generated_image)
43
  total_loss = _compute_loss(generated_features, content_features, style_features, alpha, beta)
44
 
45
  total_loss.backward()
46
  optimizer.step()
47
 
48
+ return generated_image