jamino30 commited on
Commit
f1ac6b9
1 Parent(s): f5be54d

Upload folder using huggingface_hub

Browse files
Files changed (2) hide show
  1. app.py +4 -4
  2. utils.py +4 -12
app.py CHANGED
@@ -49,13 +49,13 @@ def compute_loss(generated_features, content_features, style_features, alpha, be
49
  for generated_feature, content_feature, style_feature in zip(generated_features, content_features, style_features):
50
  batch_size, n_feature_maps, height, width = generated_feature.size()
51
 
52
- content_loss += (torch.mean((generated_feature - content_feature) ** 2))
53
 
54
  G = torch.mm((generated_feature.view(batch_size * n_feature_maps, height * width)), (generated_feature.view(batch_size * n_feature_maps, height * width)).t())
55
  A = torch.mm((style_feature.view(batch_size * n_feature_maps, height * width)), (style_feature.view(batch_size * n_feature_maps, height * width)).t())
56
 
57
  E_l = ((G - A) ** 2)
58
- w_l = 1/5
59
  style_loss += torch.mean(w_l * E_l)
60
 
61
  return alpha * content_loss + beta * style_loss
@@ -86,8 +86,8 @@ def inference(content_image, style_name, style_strength, output_quality, progres
86
 
87
  with torch.no_grad():
88
  content_features = model(content_img)
89
- if img_size == 512: style_features = cached_style_features[style_name][0]
90
- else: style_features = cached_style_features[style_name][1]
91
 
92
  for _ in tqdm(range(iters), desc='The magic is happening ✨'):
93
  optimizer.zero_grad()
 
49
  for generated_feature, content_feature, style_feature in zip(generated_features, content_features, style_features):
50
  batch_size, n_feature_maps, height, width = generated_feature.size()
51
 
52
+ content_loss += torch.mean((generated_feature - content_feature) ** 2)
53
 
54
  G = torch.mm((generated_feature.view(batch_size * n_feature_maps, height * width)), (generated_feature.view(batch_size * n_feature_maps, height * width)).t())
55
  A = torch.mm((style_feature.view(batch_size * n_feature_maps, height * width)), (style_feature.view(batch_size * n_feature_maps, height * width)).t())
56
 
57
  E_l = ((G - A) ** 2)
58
+ w_l = 1 / 5
59
  style_loss += torch.mean(w_l * E_l)
60
 
61
  return alpha * content_loss + beta * style_loss
 
86
 
87
  with torch.no_grad():
88
  content_features = model(content_img)
89
+
90
+ style_features = cached_style_features[style_name][0 if img_size == 512 else 1]
91
 
92
  for _ in tqdm(range(iters), desc='The magic is happening ✨'):
93
  optimizer.zero_grad()
utils.py CHANGED
@@ -3,18 +3,11 @@ from PIL import Image
3
  import torch
4
  import torchvision.transforms as transforms
5
 
6
- def preprocess_img(img: Image, img_size):
7
- original_size = img.size
8
-
9
- transform = transforms.Compose([
10
- transforms.Resize((img_size, img_size)),
11
- transforms.ToTensor()
12
- ])
13
- img = transform(img).unsqueeze(0)
14
- return img, original_size
15
-
16
  def preprocess_img_from_path(path_to_image, img_size):
17
  img = Image.open(path_to_image)
 
 
 
18
  original_size = img.size
19
 
20
  transform = transforms.Compose([
@@ -25,8 +18,7 @@ def preprocess_img_from_path(path_to_image, img_size):
25
  return img, original_size
26
 
27
  def postprocess_img(img, original_size):
28
- img = img.cpu().clone()
29
- img = img.squeeze(0)
30
 
31
  # address tensor value scaling and quantization
32
  img = torch.clamp(img, 0, 1)
 
3
  import torch
4
  import torchvision.transforms as transforms
5
 
 
 
 
 
 
 
 
 
 
 
6
  def preprocess_img_from_path(path_to_image, img_size):
7
  img = Image.open(path_to_image)
8
+ return preprocess_img(img, img_size)
9
+
10
+ def preprocess_img(img: Image, img_size):
11
  original_size = img.size
12
 
13
  transform = transforms.Compose([
 
18
  return img, original_size
19
 
20
  def postprocess_img(img, original_size):
21
+ img = img.detach().cpu().squeeze(0)
 
22
 
23
  # address tensor value scaling and quantization
24
  img = torch.clamp(img, 0, 1)