Spaces:
Running
on
Zero
Running
on
Zero
Upload folder using huggingface_hub
Browse files
app.py
CHANGED
@@ -49,13 +49,13 @@ def compute_loss(generated_features, content_features, style_features, alpha, be
|
|
49 |
for generated_feature, content_feature, style_feature in zip(generated_features, content_features, style_features):
|
50 |
batch_size, n_feature_maps, height, width = generated_feature.size()
|
51 |
|
52 |
-
content_loss +=
|
53 |
|
54 |
G = torch.mm((generated_feature.view(batch_size * n_feature_maps, height * width)), (generated_feature.view(batch_size * n_feature_maps, height * width)).t())
|
55 |
A = torch.mm((style_feature.view(batch_size * n_feature_maps, height * width)), (style_feature.view(batch_size * n_feature_maps, height * width)).t())
|
56 |
|
57 |
E_l = ((G - A) ** 2)
|
58 |
-
w_l = 1/5
|
59 |
style_loss += torch.mean(w_l * E_l)
|
60 |
|
61 |
return alpha * content_loss + beta * style_loss
|
@@ -86,8 +86,8 @@ def inference(content_image, style_name, style_strength, output_quality, progres
|
|
86 |
|
87 |
with torch.no_grad():
|
88 |
content_features = model(content_img)
|
89 |
-
|
90 |
-
|
91 |
|
92 |
for _ in tqdm(range(iters), desc='The magic is happening ✨'):
|
93 |
optimizer.zero_grad()
|
|
|
49 |
for generated_feature, content_feature, style_feature in zip(generated_features, content_features, style_features):
|
50 |
batch_size, n_feature_maps, height, width = generated_feature.size()
|
51 |
|
52 |
+
content_loss += torch.mean((generated_feature - content_feature) ** 2)
|
53 |
|
54 |
G = torch.mm((generated_feature.view(batch_size * n_feature_maps, height * width)), (generated_feature.view(batch_size * n_feature_maps, height * width)).t())
|
55 |
A = torch.mm((style_feature.view(batch_size * n_feature_maps, height * width)), (style_feature.view(batch_size * n_feature_maps, height * width)).t())
|
56 |
|
57 |
E_l = ((G - A) ** 2)
|
58 |
+
w_l = 1 / 5
|
59 |
style_loss += torch.mean(w_l * E_l)
|
60 |
|
61 |
return alpha * content_loss + beta * style_loss
|
|
|
86 |
|
87 |
with torch.no_grad():
|
88 |
content_features = model(content_img)
|
89 |
+
|
90 |
+
style_features = cached_style_features[style_name][0 if img_size == 512 else 1]
|
91 |
|
92 |
for _ in tqdm(range(iters), desc='The magic is happening ✨'):
|
93 |
optimizer.zero_grad()
|
utils.py
CHANGED
@@ -3,18 +3,11 @@ from PIL import Image
|
|
3 |
import torch
|
4 |
import torchvision.transforms as transforms
|
5 |
|
6 |
-
def preprocess_img(img: Image, img_size):
|
7 |
-
original_size = img.size
|
8 |
-
|
9 |
-
transform = transforms.Compose([
|
10 |
-
transforms.Resize((img_size, img_size)),
|
11 |
-
transforms.ToTensor()
|
12 |
-
])
|
13 |
-
img = transform(img).unsqueeze(0)
|
14 |
-
return img, original_size
|
15 |
-
|
16 |
def preprocess_img_from_path(path_to_image, img_size):
|
17 |
img = Image.open(path_to_image)
|
|
|
|
|
|
|
18 |
original_size = img.size
|
19 |
|
20 |
transform = transforms.Compose([
|
@@ -25,8 +18,7 @@ def preprocess_img_from_path(path_to_image, img_size):
|
|
25 |
return img, original_size
|
26 |
|
27 |
def postprocess_img(img, original_size):
|
28 |
-
img = img.cpu().
|
29 |
-
img = img.squeeze(0)
|
30 |
|
31 |
# address tensor value scaling and quantization
|
32 |
img = torch.clamp(img, 0, 1)
|
|
|
3 |
import torch
|
4 |
import torchvision.transforms as transforms
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
def preprocess_img_from_path(path_to_image, img_size):
|
7 |
img = Image.open(path_to_image)
|
8 |
+
return preprocess_img(img, img_size)
|
9 |
+
|
10 |
+
def preprocess_img(img: Image, img_size):
|
11 |
original_size = img.size
|
12 |
|
13 |
transform = transforms.Compose([
|
|
|
18 |
return img, original_size
|
19 |
|
20 |
def postprocess_img(img, original_size):
|
21 |
+
img = img.detach().cpu().squeeze(0)
|
|
|
22 |
|
23 |
# address tensor value scaling and quantization
|
24 |
img = torch.clamp(img, 0, 1)
|